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1 Simplical Complex

Definition (Simplical complex).
V set of vertices
X CP(V) with

» {v}ieX,VveV

> reX,c0CT=0€X

Further notation:

> 7€ X :dim(r) =|7| -1
> X(k) ={r € X |dim(7) = k}
» X is pure, d-dimensional if V7 € X Jo € X(d): 7 C o
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Links in a Simplical Complex

Definition (Link).
Let o € X, then

kx(o)={reX|tNo=0,7Uoc € X}

If o € X(d —2) then Ikx(o) is a graph.



Random Walk Matrix and its Spectrum

Definition.
For a (finite, simple) graph G = (V, E), its random walk matrix
M € Mat)y(R) is given by, for v,w € V

degl(v) if {v,w}eE
0 if {v,w} ¢ E

Mvw=

)

M has eigenvalues

1=A >N 2> > Ay



1 High Dimensional Expanders

Definition (Oppenheim 2018).
Let X be a pure, d-dimensional simplicial complex satisfying:

> X is connected;
» |kx(o) is connected for all o € X(i) for i < d — 2;
> Xo(lkx(0)) < v < X forall o € X(d —2).

Then X is a (1_—((;%)7)— (local spectral) HDX.
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High Dimensional Expanders - Remarks

» Other definitions of HDX exist — not equivalent!
> local spectral expansion = fast convergence of random walk

> applications in computer science and pure math



High Dimensional Expanders - Remarks

» Other definitions of HDX exist — not equivalent!
> local spectral expansion = fast convergence of random walk

> applications in computer science and pure math
Known constructions so far

> Lubotzky, Samuels, and Vishne 2005: Ramanujan
complexes using quotients of Bruhat-Tits buildings

» Kaufman, Oppenheim 2018: spectral HDX using coset
complexes of elementary matrices

» O’'Donnell, Pratt 2022: spectral HDX using coset
complexes for many Chevalley groups



Groups
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Simplical Complexes from Groups

Definition (Coset complex).
Let G group, Ho, ..., Hy < G subgroups, then
CC(G; Ho, ..., Hy) is a pure, d-dimensional SC with

> vertices |_|f’:0 G/H;
» {g1Hi, ..., gkH;} forms a (k — 1)-simplex iff ﬂj-;l giH; #0

Maximal dimensional simplices: {gHo, ..., gH4} for g € G.
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A Dynkin diagram A is given by a set of vertices | connected by
0,1,2 (or 3) edges with arrows for double or triple edges.
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Dynkin Diagrams and Root Subgroups

A Dynkin diagram A is given by a set of vertices | connected by
0,1,2 (or 3) edges with arrows for double or triple edges.
We consider diagrams that are

> not of finite type

» |/| — 1-spherical, i.e. if we remove one vertex we get a
diagram of finite type

Fix a finite field k,|k| > 4, then for each i € | we have a root
subgroup U; = (k,+)



2 Kac-Moody-Steinberg Group

Given a Dynkin diagram A with vertex set /, we define for each
J € | a group
UJ:<U,',I.€J’R>

where the relations R give conditions for the commutators
[Ui, Uj] depending on the number of edges that connect i and j
in A.



2 Kac-Moody-Steinberg Group

Given a Dynkin diagram A with vertex set /, we define for each
J € | a group
UJ:<Ui,i€J|R>

where the relations R give conditions for the commutators
[Ui, Uj] depending on the number of edges that connect i and j
in A.

Definition (Kac-Moody-Steinberg Group).

Ua(k) == *4c1Uy /(U — Uk, J S K C )



Our Results: New High Dimensional Expanders



3 The Main Theorem - Ingredients

Ingredients: finite group G, finite field k with |k| = p™,
a Dynkin diagram A like before s.t. |/| = d + 1, KMS-group
Ua(k)



3 The Main Theorem - Ingredients

Ingredients: finite group G, finite field k with |k| = p™,
a Dynkin diagram A like before s.t. |/| = d + 1, KMS-group

Ua(k)
¢ : Ua(k) — G homomorphism satisfying

> ¢ is injective on U, for each J C /
> for each J, K C /, we have

#(Uy) N o(Uk) = (U, N Uk)

> ¢ is surjective



3 \ The Main Theorem - Result

Theorem.
Set H; = (Z)(UI\{,}), then

CC(G, (Hi)ier)

2
IS a (ﬁ%) HDX.



3 Infinte Families

Definition (Infinite family of bounded degree HDX).
(Xm)men a family of pure, d-dim SC such that 3\, A satisfying
that, for all m € N, we have

» | Xm(0)| = 00 as m — oo
> Forall 7€ Xp: {o€eX(d) |7 Co} <A
» X, isa - HDX



3

Infinte Families

Definition (Infinite family of bounded degree HDX).
(Xm)men a family of pure, d-dim SC such that 3\, A satisfying
that, for all m € N, we have

» | Xm(0)| = 00 as m — oo
> Forall 7€ Xp: {o€eX(d) |7 Co} <A
» X, isa - HDX

We found two ways to construct such infinite families using our
main theorem:

» by using that Ua(k) is residually finite in many cases

> by looking at quotients of affine U (k) inside Chevalley
groups



3 \ Infinite Family of finite quotients - Sk

¢ : UA(k) = <U, | i=0, 1,2> — 5/3(k[t])

1 A0 1 00
U(M)— [0 1 0 d(Ugx) = | kt 1 k
0 01 kt 0 1
1 00 1 kK 0
U(A\)— [0 1 A #(Up1)=10 1 0
0 01 kt kt 1
1 00 1 k k
Uo()\) — 0 10 qb( U12) =10 1 k
At 0 1 0 0 1



Fix a family of irreducible polynomials (f)men s.t. for all m:
deg(fm) > 2, (t)+ (fm) = K[t], Jim deg(f) = c©
Define ¢y, = mm 0 ¢ : Ua(k) — Sh(k[t]/(fm)) and set
Gm = Sh(K[t]/(fm))

Hy" = mm(¢(Ur2)), HI" = 7m(¢(Uo2)), H3" = 7m((Uo1))

Corollary.
Xm = CC(Gm; HY', H", H"), m € N is an infinite family of
bounded degree HDX.
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