Constructing High-Dimensional Expanders

GHENT

UNIVERSITY

GE FACULTY OF SCIENCES

Inga Valentiner-Branth joint work with Laura Grave de Peralta

March 19, 2024

A family of finite simple graphs $(G_m = (V_m, E_m))_{m \in \mathbb{N}}$ is called a **family of expanders** if there exist $d \in \mathbb{N}, \varepsilon > 0$ such that

1. $|V_m| \stackrel{m \to \infty}{\longrightarrow} \infty$,

2.
$$G_m$$
 is *d*-regular for all $m \in \mathbb{N}$,

3.
$$G_m$$
 is a ε -expander for all $m \in \mathbb{N}$.

Let G = (V, E) be a finite, simple, graph, n = |V|.

$$\blacktriangleright L^2(V) = \{f : V \to \mathbb{R}\} \cong \mathbb{R}^n$$

• inner product on $L^2(V)$: $\langle f,g \rangle = \sum_{v \in V} \deg(v) f(v) g(v)$

For each edge e ∈ E fix an orientation e = (e⁻, e⁺)
 define δ : L²(V) → L²(E) via (δf)(e) = f(e⁺) - f(e⁻).

• $\Delta = \delta^* \delta : L^2(V) \to L^2(V)$ is the Laplace operator of *G*.

$$(\Delta f)(v) = f(v) - \frac{1}{\deg(v)} \sum_{u: \{u,v\} \in E} f(u)$$

► Eigenvalues of
$$\Delta$$
: $\lambda_1 = 0 \le \lambda_2 \le \dots \le \lambda_n$
► Let $L_0^2(V) = \{f \in L_2(V) \mid \langle f, 1 \rangle = 0\}$
► $\lambda_2(G) = \inf \left\{ \frac{\langle \Delta f, f \rangle}{\langle f, f \rangle} \mid 0 \ne f \in L_0^2(V) \right\}$

Let $\varepsilon > 0$, then G is an ε -expander if

.......

 $\lambda_2(G) \geq \varepsilon$

Higher dimensions - cohomology

Let X be a pure d-dimensional finite simplicial complex. Fix an order on the vertices $X(0) = \{v_1, ..., v_n\}, v_1 < \cdots < v_n$. Let \mathbb{F} be any abelian group.

Definition.

- collection of *i*-dimensional faces
 X(i) = {σ ∈ X | dim(σ) = i}, X(−1) := {∅}
- *i*-cochains of X: $C^i(X, \mathbb{F}) = \{f : X(i) \to \mathbb{F}\}$
- oriented incidence number for $\sigma = \{v_{j_0}, \dots, v_{j_i}\} \in X(i), \tau \in X(i-1):$

$$[\sigma:\tau] := \begin{cases} (-1)^{\ell} & \text{ if } \sigma \setminus \tau = \{\mathsf{v}_{j_{\ell}}\} \\ 0 & \text{ if } \tau \nsubseteq \sigma \end{cases}$$

i-th coboundary map, for $-1 \le i \le d-1$

$$\delta_i: C^i(X,\mathbb{F}) \to C^{i+1}(X,\mathbb{F}): \ (\delta_i f)(\sigma) = \sum_{\tau \in X(i)} [\sigma:\tau] f(\tau)$$

• cocycles
$$Z^i(X, \mathbb{F}) = \ker \delta_i$$

• coboundaries
$$B^i(X, \mathbb{F}) = \operatorname{im} \delta_{i-1}$$

• *i*-th cohomology group $H^i(X, \mathbb{F}) = Z^i(X, \mathbb{F})/B^i(X, \mathbb{F})$

For $f, g \in C^{i}(X, \mathbb{R})$ define

$$\langle f,g
angle = \sum_{\sigma \in X(i)} \deg(\sigma) f(\sigma) g(\sigma)$$

where deg(σ) = $|\{\tau \in X(d) \mid \sigma \subseteq \tau\}|$. This gives $C^i(X, \mathbb{R})$ a Hilbert space structure.

For $\mathbb{F} = \mathbb{F}_2$ we only define a norm on $C^i(X, \mathbb{F}_2)$:

$$\|f\| = \sum_{\sigma \in \mathsf{supp}(f)} \frac{\mathsf{deg}(\sigma)}{|X(d)|\binom{d+1}{i}}$$

Let $\mathbb{F} = \mathbb{R}$, then for all $0 \le i \le d-1$ we define the higher order Laplacian of X as

$$\Delta_i^{\mathsf{up}} = \delta_i^* \delta_i, \ \Delta_i^{\mathsf{down}} = \delta_{i-1} \delta_{i-1}^*, \ \Delta_i = \Delta_i^{\mathsf{up}} + \Delta_i^{\mathsf{down}}$$

$$\lambda^{(i)}(X) = \inf_{f \in (B^i)^{\perp}} \frac{\langle \Delta_i f, f \rangle}{\langle f, f \rangle} = \inf_{f \in (B^i)^{\perp}} \left(\frac{\|\delta_i f\|}{\|f\|} \right)^2$$

X is an ε -spectral expander if $\lambda^{(i)}(X) \ge \varepsilon$ for all $0 \le i \le d-1$.

We define two expansion parameters:

$$h_i(X) = \min\left\{\frac{\|\delta_i(f)\|}{\min_{z \in Z^i} \|f + z\|} \mid f \in C^i \setminus Z^i\right\}$$

Syst_i(X) = min{ $\|z\| \mid z \in Z^i \setminus B^i$ }

X is an ε -coboundary expander if $h_i(X) \ge \varepsilon$ and $H^i(X, \mathbb{F}_2) = 0$ for all $0 \le i \le d - 1$.

X is a (ε, μ) -cosystolic expander if $h_i(X) \ge \varepsilon$ and Syst_i $(X) \ge \mu$ for all $0 \le i \le d - 1$.

Recall:
$$lk_X(\tau) = \{ \sigma \in X \mid \sigma \cap \tau = \emptyset, \sigma \cup \tau \in X \}$$

A pure, finite, *d*-dimensional complex X is called a ε -local spectral expander, for some $\varepsilon > 0$, if

- the 1-skeleton of X is connected
- For every \(\tau\) ∈ X with dim(\(\tau\)) ≤ d − 2 we have that the 1-skeleton of lk_X(\(\tau\)) is connected

$$\forall \tau \in X(d-2) : \lambda_2(\mathsf{lk}_X(\tau)) \geq \varepsilon.$$

Theorem (Oppenheim 2018).

If X is an ε -local spectral expander and $\varepsilon \ge 1 - \frac{1}{d}$ then X is an $\tilde{\varepsilon}$ -spectral expander and an ε' -geometric expander.

Theorem (Evra-Kaufman 2017).

Let X be an α -local spectral expander such that all links $lk_X(\tau)$ with $0 \leq \dim(\tau) \leq d-2$ are β -coboundary expander. Then there exist $\varepsilon, \mu > 0$ such that the (d-1)-skeleton of X is a (ε, μ) -cosystolic expander.

The complete simplex and spherical buildings are spectral and coboundary expander, but we want:

Infinite family of bounded degree HDX Let $\varepsilon > 0, c, d \in \mathbb{N}$ be fixed. A family $(X_s)_{s \in \mathbb{N}}$ of finite, pure, *d*-dimensional complexes is a family of HDX if

- For all s ∈ N: X_s is an ε-spectral/coboundary/cosystolic expander
- ▶ for all $s \in \mathbb{N}, v \in X_s(0)$: deg $(v) \leq c$

$$|X_s(0)| \to \infty \text{ for } s \to \infty.$$

- ► First construction: Lubotzky, Samuels, Vishne (2005): quotients of Bruhat-Tits buildings by cocompact lattices → local spectral and cosystolic HDX
- Kaufman, Oppenheim (2018): coset complexes over SL_n(k[t]/(f)) → local spectral expander
- O'Donnel, Pratt (2022): coset complexes over any Chevalley group → local spectral expander
- ► Grave de Peralta, V-B (2024): coset complexes over finite quotients of KMS groups → local spectral expander

Let G be a finite group and H_0, \ldots, H_d subgroups of G. Then the coset complex $CC(G, (H_i)_{i=0}^d)$ is a d-dimensional simplical complex with

• vertices
$$\bigsqcup_{i=0}^{d} G/H_i$$

• maximal faces $\{gH_0, \ldots, gH_d\}$ for $g \in G$.

In particular $gH_i \sim hH_j$ if $i \neq j$ and $gH_i \cap hH_j \neq \emptyset$.

Example High-dimensional expander

- Fix a finite field k, $|k| \ge 4$, char $(k) \ne 2$
- Consider the following subgroups inside SL₃(k[t]):

$$H_0 = \begin{pmatrix} 1 & k & k \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix}, H_1 = \begin{pmatrix} 1 & 0 & 0 \\ kt & 1 & k \\ kt & 0 & 1 \end{pmatrix}, H_2 = \begin{pmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ kt & kt & 1 \end{pmatrix}$$

- Fix irreducible polynomials $f_m \in k[t]$ with deg $(f_m) \ge 2$ for $m \in \mathbb{N}$ such that deg $(f_m) \to \infty$. $\pi_m : SL_3(k[t]) \to SL_3(k[t]/(f_m))$ the entry-wise projection.
- Set $G_m = SL_3(k[t]/(f_m)), H_i^m = \pi_m(H_i), i = 0, 1, 2$

Then

$$(\mathcal{CC}(G_m,(H_0^m,H_1^m,H_2^m)))_{m\in\mathbb{N}}$$

is a family of bounded degree spectral expanders.

Generalization

Let A be a Dynkin diagram with nodes I that is 2-spherical. Set, for all $i \in I$

$$U_i \cong (k, +)$$

and for all $i \in I, i \neq j \in I$

$$\begin{array}{cccc} \text{if} & \stackrel{i}{\bullet} & \stackrel{j}{\bullet} & : \mathcal{U}_{ij} = \mathcal{U}_i \times \mathcal{U}_j \\ \text{if} & \stackrel{i}{\bullet} & \stackrel{j}{\bullet} & : \mathcal{U}_{ij} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{pmatrix} \mid a, b, c \in k \right\} \quad \mathcal{U}_i \leftrightarrow a, \ \mathcal{U}_j \leftrightarrow c \\ \text{if} & \stackrel{i}{\bullet} & \stackrel{j}{\bullet} & : \mathcal{U}_{ij} = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ x & 1 & 0 & 0 \\ xz + a & z & 1 & 0 \\ c & a & -x & 1 \end{pmatrix} \mid x, z, a, c \in k \\ \mathcal{U}_i \leftrightarrow z, \ \mathcal{U}_j \leftrightarrow x \end{array} \right\} \leq \operatorname{Sp}_4(k) \\ \mathcal{U}_i \leftrightarrow z, \ \mathcal{U}_j \leftrightarrow x \end{array}$$

$$\mathcal{U}_{A}(k) = \left. \underset{i,j \in I}{\ast} U_{\{i,j\}} \right| \left(U_{i} \stackrel{f_{i,j}}{\hookrightarrow} U_{ij}; i \neq j \in I \right)$$
$$= \left\langle U_{i}, U_{ij}; i, j \in I \mid \forall i \neq j \in I, \forall a \in U_{i} : a = f_{i,j}(a) \right\rangle$$

- A not spherical $\Rightarrow U_A(k)$ infinite and $U_{ij} \hookrightarrow U_A(k)$
- For J ⊂ I let U_J = ⟨U_j | j ∈ J⟩ ≤ U_A(k) If sub-diagram induced by J is spherical, U_J is finite
- in many cases $U_A(k)$ is residually finite
- ▶ if A is affine, U_A(k) has quotient inside Chevalley groups over k[t]/(f) like in the example.

• $\mathcal{U}_A(k)$ a KMS-group such that

- k a finite field, $|k| \ge 4$
- ➤ A a Dynkin diagram on nodes I such that any sub-diagram of size |I| - 1 is spherical
- G a finite group, $\phi : \mathcal{U}_A(k) \twoheadrightarrow G$ such that
 - $\phi|_{U_J}$ is injective for all $J \subsetneq I$
 - $\phi(U_J) \cap \phi(U_K) = \phi(U_J \cap U_K)$ for all $J, K \subsetneq I$.

Then

$$\mathcal{CC}\left(G,\left(\phi(U_{I\setminus\{i\}})\right)_{i\in I}\right)$$

is a $\gamma\text{-local spectral expander, where }\gamma$ is independent of $\phi, \textit{G}.$

Question

Are the constructed simplical complexes coboundary or cosystolic expanders?

- [1] A. Lubotzky. High dimensional expanders. *Proceedings of the International Congress of Mathematicians—Rio de Janeiro*, 2018
- [2] T.Kaufman and I. Oppenheim. High dimensional expanders and coset geometries. *European Journal of Combinatorics*, 2023
- [3] A. Lubotzky, B. Samuels and U. Vishne. Ramanujan complexes of type \tilde{A}_d . Israel Journal of Mathematics, 2005
- [4] L. Grave de Peralta and I. Valentiner-Branth. High-dimensional expanders from Kac–Moody–Steinberg groups. *arXiv 2401.05197*, 2024

Main Theorem - quick version

- $U_A(k)$ a Kac-Moody-Steinberg group with
 - k a finite field, $|k| \ge 4$
 - ► A a Dynkin diagram on nodes I such that any sub-diagram of size |I| - 1 is spherical
- *G* a finite group, $\phi : U_A(k) \twoheadrightarrow G$ with some injectivity properties.

Then

$$\mathcal{CC}\left(G,\left(\phi(U_{I\setminus\{i\}})\right)_{i\in I}\right)$$

is a $\gamma\text{-local spectral expander, where }\gamma$ is independent of $\phi, {\it G}.$

Question

Are the constructed simplical complexes coboundary or cosystolic expanders?