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Abstract

Cosystolic expansion is a high-dimensional generalization of the Cheeger constant for simpli-
cial complexes. Originally, this notion was motivated by the fact that it implies the topological
overlapping property, but more recently it was shown to be connected to problems in theo-
retical computer science such as list agreement expansion and agreement expansion in the low
soundness regime.

There are only a few constructions of high-dimensional cosystolic expanders and, in di-
mension larger than 2, the only known constructions prior to our work were (co-dimension
1)-skeletons of quotients of affine buildings. In this paper, we give the first coset complex
construction of cosystolic expanders for an arbitrary dimension. Our construction is more sym-
metric and arguably more elementary than the previous constructions relying on quotients of
affine buildings.

The coset complexes we consider arise from finite quotients of Kac–Moody–Steinberg (KMS)
groups and are known as KMS complexes. KMS complexes were introduced in recent work
by Grave de Peralta and Valentiner-Branth where it was shown that they are local-spectral
expanders. Our result is that KMS complexes, satisfying some minor condition, give rise to
infinite families of bounded degree cosystolic expanders of arbitrary dimension and for any
finitely generated Abelian coefficient group.

This result is achieved by observing that proper links of KMS complexes are joins of op-
position complexes in spherical buildings. In order to show that these opposition complexes
are coboundary expanders, we develop a new method for constructing cone functions by itera-
tively adding sets of vertices. Hence we show that the links of KMS complexes are coboundary
expanders. Using the prior local-to-global results, we obtain cosystolic expansion for the (co-
dimension 1)-skeletons of the KMS complexes.

∗The author is partially supported by ISF grant no. 242/24.
†The author is supported by the FWO and the F.R.S.–FNRS under the Excellence of Science (EOS) program

(project ID 40007542).
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1 Introduction

High-dimensional expanders (HDX’s) are high-dimensional generalizations of expander graphs. In
recent years there has been much work on this subject that has led to several important results, for
example, in the analysis of random walks (e.g., [KO20, DDFH24, ALOGV24]), in metric geometry
(e.g., [EK24]), in error correcting codes (e.g., [DEL+22, KO22]) and in PCP’s (e.g., [BMV24]).

In graphs, expansion is usually defined either via a spectral condition on the eigenvalues of the
random walk or as a bound on the Cheeger constant. In the case of graphs, these two definitions are
connected (and imply each other) via the Cheeger inequality. In higher dimensions, i.e., considering
simplicial complexes in lieu of graphs, there is a spectral definition of expansion (i.e., local spectral
expansion – see exact definition in Section 2.2 below) and higher dimensional analogues of the
Cheeger constant (i.e., coboundary/cosystolic expansion – see exact definition in Section 2.3 below),
but these definitions do not imply one another.

In our work below, we construct new examples of bounded degree cosystolic HDX’s. Our
construction relies on KMS complexes (which are coset complexes introduced in [GdPVB24]) and
on a novel idea of constructing a cone function in an iterative process.

1.1 KMS complexes

In [KO18, KO23], Kaufman and Oppenheim gave a construction of spectral HDX’s based on the
idea of coset complexes (see below). The construction of Kaufman and Oppenheim was based on the
group SLn+1(Fp[t]), and was later generalized by O’Donnell and Pratt [OP22] to other Chevalley
groups.

In [GdPVB24], another coset complex construction of spectral HDX’s was given using Kac–
Moody–Steinberg groups. Namely, in [GdPVB24] it was shown that given a generalized Cartan
matrix satisfying some conditions and a finite field Fq, there is an infinite family of finite coset
complexes that are spectral HDX’s. The construction of KMS complexes involves some technicalities
and we refer the reader to Section 4 for the full details and an explicit example. Our results are
restricted to a certain class of KMS complexes characterized as follows. We call a generalized Cartan
matrix A = (Aij)i,j∈I of rank m n-classical (for n ≤ m) if every submatrix (Aij)i,j∈J , J ⊂ I, |J | ≤ n
is of classical (i.e. type Ak, Bk, Ck,Dk) type or if it is reducible, all irreducible parts are of classical
type. A KMS complex is called n-classical if its underlying generalized Cartan matrix is n-classical.

While KMS complexes can be seen as a variant of the Chevalley group constructions of [KO23,
OP22], they seem to have a significant advantage that is relevant to our result below. Namely, the
links of vertices of KMS complexes are associated to opposition complexes which are well-studied
simplicial complexes. Opposition complexes are large subcomplexes of spherical buildings and were
studied independently to answer questions of finiteness properties of arithmetic groups (see for
instance Abramenko [Abr96]). The connection of opposition complexes to KMS complexes is that
every link of a KMS complex is either an opposition complex or a join of opposition complexes. Prior
work on opposition complexes in [Abr96] suggests that, is some sense, they mimic the properties of
spherical buildings. In our work below, this point is explored and we prove that much like spherical
buildings, opposition complexes are coboundary expanders.
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1.2 Main results

A link of a pure n-dimensional simplicial complex is called proper if its dimension is at least 1 and
at most n − 1 (i.e. it is the link of a face of dimension between 0 and n − 2). As noted above,
our main result is that, under some restrictions, proper links of the KMS complexes constructed in
[GdPVB24] (see Section 4 below) are coboundary expanders:

Theorem 1.1. Let n ≥ 3 be an integer and q be a prime power. There exists ε > 0 such that for
every q > 22n−1 and every n-dimensional, n-classical KMS complex X constructed over k = Fq all
the proper links of X are ε-coboundary expanders (with respect to any finitely generated Abelian
group as coefficient group).

The theorem relies on the fact that proper links of n-classical KMS complexes are joins of
opposition complexes in spherical buildings of classical type. Given an explicit n-classical KMS
group with the extra restriction that no subdiagram of type Dk appears in the Dynkin diagram,
it is possible to track ε and get an explicit (but very rough) bound. Tracking an explicit bound
for ε in the Dn case could probably be done by very carefully analysing the proof, but we did not
attempt to do so.

In [GdPVB24], it was shown that n-dimensional KMS complexes over Fq are 2√
q -local spectral

expanders for every q that is large enough with respect to n (the KMS complexes are constructed
under some assumptions on the corresponding generalized Cartan matrices, see exact formulation in
Theorem 4.12 below). Combining this fact with the local-to-global results of [EK24, KM21, DD24]
yields the following theorem.

Theorem 1.2. For an integer n ≥ 3, let {Xi}i be a family of n-dimensional, n-classical KMS
complexes over Fq (see details in Section 4) and let {Yi}i be the family of (n − 1)-dimensional
skeletons of {Xi}. There are ε > 0, µ > 0, q0 ∈ N such that if q ≥ q0 every Yi is an (ε, µ)-cosystolic
expander (with respect to any finitely generated Abelian group).

By [DKW18], it follows that the family of complexes {Yi}i defined in the Theorem above has
the topological overlapping property (see exact formulation in [DKW18]).

1.3 Our contributions

There are only few examples of cosystolic HDX’s (with a uniformly bounded degree). Indeed, prior
to our work, the known constructions were:

• Constructions stemming from quotients of affine buildings (e.g., Ramanujan complexes [LSV05]).
These constructions give cosystolic HDX’s of every dimension with respect to any finitely gen-
erated Abelian coefficient group via the work of Evra and Kaufman [EK24] and the general-
izations of Kaufman and Mass [KM21] and of Dikstein and Dinur [DD24]. However, all known
such constructions are less symmetric and less elementary than the construction arising from
coset complexes (see below).

• Coset complexes arising from Chevalley groups. There are two constructions of this flavour
and both only yield 2-dimensional cosystolic HDX’s. First, Kaufman and Oppenheim [KO21]
showed that their coset complex construction of spectral HDX’s gives rise to 2-dimensional
cosystolic HDX’s with respect to any group coefficients. Second, in a more recent work,
O’Donnell and Singer [OS24] showed that coset complexes arising from B3 Chevalley groups
gives rise to 2-dimensional cosystolic HDX’s with respect to F2 coefficients.
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Our construction is the first construction of cosystolic HDX’s arising from coset complexes that
holds beyond dimension 2. Furthermore, our results are more general than previous results on
coset complexes arising from Chevalley groups, since our results hold for finitely generated Abelian
coefficient group and for KMS complexes of the types Ãn, B̃n, C̃n, D̃n.

The method of our proof (as described below) is also novel – we introduce a new method of
constructing a cone function by several steps of adding sets of vertices to a subcomplex until we
added all the vertices of the entire complex.

1.4 Proof idea

As noted above, Theorem 1.2 follows from Theorem 1.1 via the results of [EK24, KM21, DD24].
Thus, we will focus on the idea of proof of Theorem 1.1, i.e., on the idea of proving that links of
KMS complexes are coboundary expanders. Since these links are symmetric, it is enough to show
that they have a cone function with bounded radius.

In the constructions of cosystolic expanders stemming from quotients of affine buildings, a cone
function was constructed in [LMM16] via utilizing the fact that the links were spherical buildings
that have a rich apartment structure. In our construction, the links of KMS complexes do not have
such an apartment structure and thus we develop a new method for constructing a cone function
with bounded radius. Our method is based on the idea of constructing a cone function by starting
with a subcomplex with a cone function, iteratively adding sets of vertices and extending the cone
function to that set.

The exact formulation of the theorem is quite technical (see Theorem 3.2 below), and we will
explain the idea only on the level of vanishing of homology (a cone function can be thought of as a
quantification of vanishing of homology with respect to a base point). Let X be an n-dimensional
simplicial complex with a full subcomplex X ′. Given a vertex w ∈ X, we denote X ′ ∪ {w} to
be the full subcomplex of X spanned by the vertices of X ′ and w. The link of w relative to X ′,
is the intersection Xw ∩ X ′, where Xw is the link of w in X. We will show that vanishing of
reduced homology for X ′ and the link of w relative to X ′ implies vanishing of reduced homology
for X ′ ∪ {w}. Indeed, let A = X ′, B = {w} ∗ (Xw ∩X ′) (more precisely the geometric realization
of the two subcomplexes, but we will not consider this subtlety at this point). Then

X ′ ∪ {w} = X ′ ∪ {σ ∈ X : w ∈ σ, σ \ {w} ∈ X ′} = A ∪B,

and A∩B = Xw ∩X ′ (note that the intersection of A and B is in the topological sense, which can
be seen as A ∩ B = {τ ∩ σ | τ ∈ A, σ ∈ B}). Furthermore, B can be contracted onto {w}. Hence
we have H̃i(A) = H̃i(B) = 0 for 0 ≤ i ≤ n − 1 and H̃i(A ∩ B) = 0 for 0 ≤ i ≤ n − 2. Thus, the
Mayer-Vietoris Theorem implies that H̃i(X) = 0 for 0 ≤ i ≤ n− 1.

An important observation is that in the procedure above, instead of adding a single vertex w
to X ′, one can add a set of vertices W to X ′ as long as no two vertices in W are connected by
an edge in X and for every vertex w ∈ W , the link of w relative to X ′ has vanishing of reduced
homology. Theorem 3.2 is a quantification of this idea in the language of cone functions, where
the cone radius is bounded as a function of the cone radius of X ′ and the cone radii of the links of
w ∈W relative to X ′.

Applying this idea to links of KMS complexes follows the work of Abramenko [Abr96] on op-
position complexes of spherical buildings of classical type. Let X be an n-dimensional, n-classical
KMS complex constructed over Fq. Under this assumption, the links of vertices in X are subcom-
plexes of classical spherical buildings known as opposition complexes, or joins of such. Roughly
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speaking, Abramenko showed that if q is sufficiently large, then the links of X can be constructed
by the procedure of adding sets of vertices described above, that the number of steps in this proce-
dure is independent of q and that the (relative) links of the added vertices are joins of opposition
complexes of spherical buildings of lower dimension. This gives rise to an inductive bound on the
cone radii and thus (by the fact that the links are symmetric) on the coboundary expansion of
opposition complexes in classical spherical buildings (and thus of the proper links in n-classical
KMS complexes).

1.5 Organization

The paper is organized as follows. In Section 2, we recall the notions of local spectral, coboundary
and cosystolic high-dimensional expansion, explain the relevant (co)homological background, define
cone functions and show some basic properties. This includes the fact that a cone function with
coefficients over Z gives rise to cone functions with coefficients in arbitrary finitely generated Abelian
groups, and how one can construct a cone function for the join of two simplicial complexes, given
cone functions for each of them separately. In Section 3, we describe our technique of extending
cone functions which is a key tool in our work. In Section 4, we recall the construction of the KMS
complexes, and in Section 5 we first describe the connection of KMS complexes to buildings and
then explain a geometric way to construct classical buildings. Finally, in Section 6 we combine the
previous observations to prove Theorem 1.1.
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2 Preliminaries

2.1 Weighted simplicial complexes

Let X be a finite n-dimensional simplicial complex. A simplicial complex X is called pure n-
dimensional if every face in X is contained in some face of dimension n. The set of all k-faces of X
is denoted X(k), and we will be using the convention in which X(−1) = {∅}. For every 0 ≤ k ≤ n,
the k-skeleton of X is the simplicial complex

⋃k
i=−1X(i). We will say that X is connected if its

1-skeleton is a connected graph.
Given a pure n-dimensional simplicial complex X, the weight function w :

⋃n
k=−1X(k) → R+

is defined to be

∀τ ∈ X(k), w(τ) =
|{σ ∈ X(n) : τ ⊆ σ}|(

n+1
k+1

)
|X(n)|

.

We note that w is normalized such that for each −1 ≤ k ≤ n, the function w can be thought of
as a probability function on X(k).

Given a finite pure n-dimensional complex X and τ ∈ X, the link of τ is the subcomplex Xτ

defined as
Xτ = {σ ∈ X : τ ∩ σ = ∅, τ ∪ σ ∈ X}.
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To clarify the notation in some situations, we will also write lkX(τ for the link of τ in X. We note
that if τ ∈ X(k), then Xτ is a pure (n − k − 1)-dimensional complex. We call Xτ a proper link, if
1 ≤ dim(Xτ ) ≤ n− 1.

We denote the weight function wτ to be the weight function on Xτ defined as above. By slight
abuse of notation, we will write v ∈ X(0) to state that v is a vertex of X.

2.2 Local spectral expansion

Let X be a finite pure n-dimensional simplicial complex with n ≥ 1 and w the weight function on
X defined above. We define the stochastic matrix of the random walk on (the 1-skeleton of) X to
be the matrix indexed by X(0) ×X(0) and defined as

M({v}, {u}) =

{
w({u,v})∑

{u′,v}∈X(1)w({u′,v})
{v, u} ∈ X(1)

0 {v, u} /∈ X(1)
.

For λ < 1, we say that X is a (one-sided) λ-spectral expander if X is connected and the second
largest eigenvalue of M is ≤ λ. We say that X is a (one-sided) λ-local spectral expander if for every
−1 ≤ k ≤ n−2 and every τ ∈ X(k), the simplicial complex Xτ is a (one-sided) λ-spectral expander.
We note that every (one-sided) λ-local spectral expander is a (one-sided) λ-spectral expander, since
the link of the empty set is X itself.

2.3 Cohomological notations and cosystolic/coboundary expansion

Let X be a pure n-dimensional simplicial complex and A an Abelian group.

We denote
−→
X (k) to be the set of oriented k-simplices and for σ ∈

−→
X (k), we denote −σ to be

the simplex with reversed orientation from σ on the same vertex set. For {v0, . . . , vk} ∈ X(k),

we denote [v0, . . . , vk] ∈
−→
X (k) to be the oriented simplex with the orientation induced from the

ordering of the vertices. Note that for every permutation γ ∈ Sym{0, . . . , k} it holds that

[vγ(0), . . . , vγ(k)] = (−1)sign(γ)[v0, . . . , vk].

We denote Ck(X;A) to be the set of k-cochains defined as follows: Ck(X;A) is the set of

functions φ :
−→
X (k) → A that are anti-symmetric, i.e., for every [v0, . . . , vk], φ(−[v0, . . . , vk]) =

−φ([v0, . . . , vk]). We recall that Ck(X;A) is an Abelian group with respect to pointwise addition.
Let w be the weight function on X defined above. For φ ∈ Ck(X;A), we define

supp(φ) = {{v0, . . . , vk} ∈ X(k) : φ([v0, . . . , vk]) 6= 0A},

‖φ‖ =
∑

σ∈supp(φ)
w(σ).

Given a subgroup K ⊆ Ck(X;A) and a cochain φ ∈ Ck(X;A), we define

‖φ−K‖= min
ψ∈K

‖φ− ψ‖.

The coboundary map dk : C
k(X;A) → Ck+1(X;A) is the map defined by mapping φ ∈ Ck(X;A)

to dkφ given by

(dkφ)([v0, . . . , vk+1]) =
k+1∑

i=0

(−1)iφ([v0, . . . , v̂i, . . . , vk+1]),
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where [v0, . . . , v̂i, . . . , vk+1] is the simplex obtained from [v0, . . . , vk+1] by removing the vertex
vi. We denote Bk(X;A) = Im(dk−1) and Zk(X;A) = Ker(dk) and recall that these are Abelian
subgroups of Ck(X;A) and that Bk(X;A) ⊆ Zk(X;A). The k-cohomology Hk(X;A) is defined as
Hk(X;A) = Zk(X;A)/Bk(X;A).

The k-coboundary/cosystolic expansion constant of X (with coefficients in A) are defined to be

hkcb(X;A) = min
φ∈Ck(X;A)\Bk(X;A)

‖dkφ‖

‖φ−Bk(X;A)‖
,

hkcs(X;A) = min
φ∈Ck(X;A)\Zk(X;A)

‖dkφ‖

‖φ− Zk(X;A)‖
.

We note that be definition hkcs(X;A) ≥ hkcb(X;A) and that by definition hkcs(X;A) > 0. We
also note that hkcs(X;A) = hkcb(X;A) if and only if Hk(X;A) = 0 and that if Hk(X;A) 6= 0, then
hkcb(X;A) = 0.

For a finite pure n-dimensional simplicial complex X and a constant ε > 0, we will say that
X is a (ε,A)-coboundary expander if for every 0 ≤ k ≤ n − 1, hkcb(X;A) ≥ ε. Also, for constants
ε > 0, µ > 0, we will say that X is a (ε, µ,A)-cosystolic expander if for every 0 ≤ k ≤ n − 1,
hkcs(X;A) ≥ ε and for every φ ∈ Zk(X,A) \Bk(X,A), ‖φ‖≥ µ.

In [KM21, DD24] the following local to global results were proven:

Theorem 2.1. Let n ≥ 3 be an integer, ε′ > 0 a constant and A be a finitely generated Abelian
group. There are constants 0 < λ < 1, ε > 0, µ > 0 such that the following holds: For every finite
pure n-dimensional simplicial complex X if

• the simplicial complex X is a (one-sided) λ-local spectral expander,

and

• for every 0 ≤ k ≤ n−2 and every τ ∈ X(k), it holds that Xτ is a (ε′,A)-coboundary expander,

then the (n− 1)-skeleton of X is a (ε, µ,A)-cosystolic expander.

2.4 Homological notations and cone functions

Let X be a pure n-dimensional simplicial complex and A an Abelian group.
Keeping the notations regrading oriented simplices above, we denote Ck(X;A) to be the set of

k-chains defined as follows: Ck(X;A) is the set of all formal sums of the form
∑

σ∈−→X (k)

tσσ,

such that tσ ∈ A and t−σ = −tσ. We note that Ck(X;A) is an Abelian group or equivalently a
Z-module. For A ∈ Ck(X;A), we define

supp(A) = {{v0, . . . , vk} : t[v0,...,vk] 6= 0A}.

In the sequel, it will be useful to work with a ”basis” for Ck(X;A). For any σ0 ∈
−→
X (k) and

any a ∈ A, we define a1σ0 ∈ Ck(X;Z) to be

a1σ =
∑

σ∈−→X (k)

tσσ
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with

tσ =





a σ = σ0

−a σ = −σ0

0A otherwise

.

With this notation, every element in Ck(X;A) is a formal sum of elements of the form a1σ, σ ∈
−→
X (k), a ∈ A.

The boundary map ∂k : Ck(X;A) → Ck−1(X;A) is the map given by

∂k




∑

[v0,...,vk]∈
−→
X (k)

t[v0,...,vk]1[v0,...,vk ]


 =

∑

[v0,...,vk]∈
−→
X (k)

k∑

i=0

(−1)it[v0,...,vk]1[v0,...,v̂i,...,vk].

Definition 2.2 (Cone function). Let X be a finite simplicial complex. Let k ∈ N ∪ {0,−1} be
a constant, A an Abelian group and v be a vertex of X. A (k,A)-cone function with apex v is a
function ConeX :

⊕k
j=−1Cj(X;A) →

⊕k+1
j=0 Cj(X;A) that fulfills the following conditions:

1. For every a ∈ A, ConeX(a1∅) = a1[v].

2. For every −1 ≤ j ≤ k, ConeX(Cj(X;A)) ⊆ Cj+1(X;A) and

ConeX |Cj(X;A) : Cj(X;A) → Cj+1(X;A)

is a homomorphism of Z-modules.

3. For every 0 ≤ j ≤ k and every A ∈ Cj(X;A),

∂j+1ConeX(A) + ConeX(∂jA) = A.

Below, we will refer to
∂j+1ConeX(A) + ConeX(∂jA) = A

as the cone equation.

Definition 2.3 (Radius of a cone). Let X be an n-dimensional simplicial complex and −1 ≤ k ≤
n − 1. Given a (k,A)-cone function ConeX , we define for every −1 ≤ j ≤ k, the j-th radius of
ConeX to be

Radj(ConeX) = max
σ∈−→X (j),a∈A

|supp(ConeX(a1σ))|.

Define the (k,A)-th cone radius of X to be

Radk(X,A) = min{Radk(ConeX) : ConeX is a (k,A)-cone function with }.

If no (k,A)-cone function of X exists, we define Radk(X,A) = ∞.

Remark 2.4. Note that in the case where n = 0 and X is a just a non-empty set of vertices, it
holds by definition that Rad−1(X,A) = 1.
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Example 2.5. Let Γ be a simplicial complex of dimension 1, i.e. a graph. Assume that Γ is
connected. Then we can construct a (0,A)-cone function for Γ in the following way. Pick an
arbitrary vertex v ∈ Γ(0) and set Coneγ(1∅) = 1[v]. Furthermore, we define ConeΓ(1[v]) = 0. In
this case we have

∂ ConeΓ(1[v]) = 0 = 1[v] − ConeΓ(1∅) = 1[v] − ConeΓ(∂1[v])

and the cone equation is satisfied in this case.
Next, let w ∈ Γ(0), w 6= v. Since Γ is connected, there exists a path w = w0, . . . , wn = v from

w to v. We define

ConeΓ(1[w]) =

n∑

i=1

1[wi−1,wi].

Then

∂ ConeΓ(1[w]) =

n∑

i=1

1[wi−1] − 1[wi] = 1[w0] − 1[wn] = 1[w] − 1[v] = 1[w] − ConeΓ(1∅) = 1[w] − ConeΓ(∂1[w])

which shows that the cone equation is satisfied in all cases, since we defined ConeΓ on the generators
of C0(Γ, A) and extend it to a homomorphism.

Additionally, note that if we choose the path from w to v to be of minimal length we have

Rad−1(ConeΓ) = 1, Rad0(ConeΓ) ≤ max
w∈Γ(0)

dist(v,w)

where dist(v,w) is the minimum length of a path between v,w.

We will show that a bound on the cone radii of Z-cones bounds the cone radii for every finitely
generated Abelian group. This result is probably well known to experts, but we could not find a
reference for it, so we include a sketch of the proof here (leaving some of the details for the reader).

Proposition 2.6. Let X be an n-dimensional simplicial complex and −1 ≤ k ≤ n − 1. For every
finitely generated Abelian group A, it holds that Radk(X,A) ≤ Radk(X,Z).

Proof. If (k,Z)-cone functions of X do not exist, then Radk(X,Z) = ∞ and the inequality holds
trivially. Assume that there exists a (k,Z)-cone function.

By the fundamental Theorem of finitely generated Abelian groups, there are prime powers

q1, . . . , ql and an integer m ∈ N ∪ {0} such that A =
(⊕l

j=1 Z/(qjZ)
)
⊕ Zm. We will denote the

elements of A as m + l tuples (a1, . . . , al, al+1, . . . , al+m), where for every 1 ≤ j ≤ l, aj ∈ Z/(qjZ)
and al+1, . . . , al+m ∈ Z. We note that for every −1 ≤ i ≤ n,

Ci(X,A) =




l⊕

j=1

Ci(X,Z/(qjZ))


⊕ Ci(X,Z)

m.

Explicitly, for every σ ∈
−→
X (i) and every (a1, . . . , al+m) ∈ A, we identify (a1, . . . , al+m)1σ ∈ Ci(X,A)

with
⊕l+m

j=1 aj1σ ∈
(⊕l

j=1Ci(X,Z/(qjZ))
)
⊕ Ci(X,Z)m.

For 1 ≤ j ≤ l, let ϕj : Z → Z/(qjZ) be the quotient map. For every −1 ≤ i ≤ n, ϕj extends to a
surjective homomorphism ϕj : Ci(X,Z) → Ci(X,Z/(qjZ)) (this is a homomorphism of Z-modules).
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Let ConeX be a (k,Z)-cone function. For every 1 ≤ j ≤ l, we define the function

ConejX :
k⊕

i=−1

Ci(X;Z/(qjZ)) →
k+1⊕

i=0

Ci(X;Z/(qjZ))

as follows:
ConejX(ϕj(A)) = ϕj(ConeX(A)),∀ − 1 ≤ i ≤ k,∀A ∈ Ci(X;Z).

We note that ConejX is well-defined: Let A,A′ ∈ Ci(X;Z) with ϕj(A) = ϕj(A
′). Then A−A′ ∈

Ker(ϕj), which implies that there is A′′ ∈ Ci(X;Z) such that A−A′ = qjA
′′. Thus

ConejX(ϕj(A))− ConejX(ϕj(A
′)) = ϕj(ConeX(A)) − ϕj(ConeX(A

′)) =

ϕj(ConeX(A−A′)) = ϕj(Cone
Z
X(qjA

′′)) = ϕj(qj Cone
Z
X(A

′′)) = 0Z/(qjZ)

and it follows that ConejX(ϕj(A)) = ConejX(ϕj(A
′)). Also, by the fact that ϕj is surjective on every

Ci(X,Z/(qjZ)) it follows that Cone
j
X is defined on every A ∈ Ci(X;Z/(qjZ)).

We leave it to the reader to verify that ConejX is a (k,Z/(qjZ))-cone function and note that for

every i, every σ ∈
−→
X (i) and every a ∈ Z/(qjZ) it holds that

supp(ConejX(a1σ)) ⊆ supp(ConeX(1σ)).

For every l+1 ≤ j ≤ m+ l, we denote ConejX = ConeX (this is a (k,Z)-cone function for every
l + 1 ≤ j ≤ l +m). For every −1 ≤ i ≤ k and every

l+m⊕

j=1

Aj ∈




l⊕

j=1

Ci(X,Z/(qjZ))


 ⊕Ci(X,Z)

m,

we define

ConeAX(
l+m⊕

j=1

Aj) =
l+m⊕

j=1

ConejX(Aj).

Extending this map Z-linearly yields a map

ConeAX :

k⊕

i=−1






l⊕

j=1

Ci(X,Z/(qjZ))


⊕ Ci(X,Z)

m


 →

k+1⊕

i=0






l⊕

j=1

Ci(X,Z/(qjZ))


⊕ Ci(X,Z)

m


 ,

i.e., a map

ConeAX :

k⊕

i=−1

Ci(X,A) →
k+1⊕

i=0

Ci(X,A).

We conclude the proof by observing that ConeAX is a (k,A)-cone function that that for every

(a1, . . . , al+m) ∈ A, every −1 ≤ i ≤ k and every σ ∈
−→
X (i), it holds that

supp(ConeAX((a1, . . . , al+m)1σ) ⊆ supp(ConeX(1σ)).

Since ConeX was an arbitrary (k,Z)-cone function, it follows that Radk(X,A) ≤ Radk(X,Z).
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In light of this Proposition, in the sequel, we will be interested with bounding Z-radii for cone
functions. Below, we will omit the Z notation when discussing cone functions: we will write k-cone
functions in lieu of (k,Z)-cone functions, Radk(X) in lieu of Radk(X,Z) etc.

Observation 2.7. We observe that for every j, Cj(X;Z) is a free Z-module and thus the condition
in the definition of the cone function that

ConeX |Cj(X;Z) : Cj(X;Z) → Cj+1(X;Z)

is a homomorphism is equivalent to the condition that this map is a Z-linear map of Z-modules.
By this linearity, the cone equation is equivalent to the condition:

∂j+1ConeX(1σ) + ConeX(∂j1σ) = 1σ,∀σ ∈
−→
X (j).

In other words, in order to verify that a linear function is a cone function, it is enough to check
the cone equation on 1σ for every oriented simplex σ.

Moreover, when one defines a cone function, it is enough to define it as a linear function
that fulfills the cone equation on 1σ on the subset of oriented simplices that contain at least one
orientation for every simplex.

The work of Gromov [Gro10] and subsequent works [KO21, KM19] showed that for symmetric
simplicial complexes, a bound on the cone radius gives rise to a bound on the coboundary expansion.
For a simplicial complex X, we denote Aut(X) to be the simplicial automorphisms from X to itself.
In [KO21] the following was proven:

Theorem 2.8. Let n ≥ 1, R > 0 be constants and A an Abelian group. For every finite pure
n-dimensional simplicial complex, if

• the group Aut(X) acts transitively on X(n),

and

• for every 0 ≤ k ≤ n− 1 it holds that Radk(X,A) ≤ R,

then for every 0 ≤ k ≤ n− 1, hkcb(X,A) ≥
1

R(n+1
k+1)

.

Combining this Theorem with Proposition 2.6 yields the following:

Theorem 2.9. Let n ≥ 1, R > 0 be constants. For every finite pure n-dimensional simplicial
complex, if

• The group Aut(X) acts transitively on X(n)

and

• For every 0 ≤ k ≤ n− 1 it holds that Radk(X,Z) ≤ R

Then for every 0 ≤ k ≤ n− 1 and every finitely generate Abelian group A it holds that

hkcb(X,A) ≥
1

R
(
n+1
k+1

) .

Remark 2.10. The statement in [KO21] is for A = F2, but the proof given there generalizes almost
verbatim for a general Abelian group.
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2.5 Cone radius of joins

In this section, we denote ⊔ to be a disjoint union. Given two non-empty finite simplicial complexes
Y1 and Y2 with vertex sets V (Y1) and V (Y2), the join of Y1 and Y2, denoted Y1 ∗Y2, is the simplicial
complex with the vertex set V (Y1) ⊔ V (Y2) and simplices σ ⊔ τ for every σ ∈ Y1 and τ ∈ Y2. We
note that Y1 ∗ Y2 includes all the simplices of the form τ = ∅ ⊔ τ and σ = σ ⊔ ∅ for every σ ∈ Y1
and τ ∈ Y2.

Below, we will need the following definition (which will also be used in the next section): Given a
simplicial complex X and a vertex v in X, we define the following operation; For every 0 ≤ j ≤ k−1

and every [v0, . . . , vj ] ∈
−→
Xv(j), we define

[v,1[v0,...,vj ]] = 1[v,v0,...,vj ].

Extending this definition linearly, for every A ∈ Cj(Xv ;Z), we define [v,A] ∈ Cj+1(X;Z). We

observe that for every [v0, . . . , vj ] ∈
−→
Xv(j),

∂j+11[v,v0,...,vj ] = 1[v,v0,...,vj ] − [v, ∂j1[v0,...,vj ]]

and thus by linearity, for every A ∈ Cj(Xv;Z),

∂j+1[v,A] = A− [v, ∂jA]. (1)

Proposition 2.11. Let Y be a non-empty finite simplicial complex and v a vertex possibly not in Y .
Then for every k ∈ N ∪ {0}, there is a k-cone function Cone{v}∗Y such that for every −1 ≤ j ≤ k,
Radj(Cone{v}∗Y ) ≤ 1.

Proof. Fix k ∈ N ∪ {0} and define a function Cone{v}∗Y as follows:

• Cone{v}∗Y (∅) = 1[v].

• For every 0 ≤ j ≤ k and every [v0, . . . , vj ] ∈
−→
Y (j),

Cone{v}∗Y (1[v0,...,vj ]) = [v,1[v0,...,vj ]] = 1[v,v0,...,vj ].

• For every 0 ≤ j ≤ k and every {v1, . . . , vj} ∈ Y ,

Cone{v}∗Y (1[v,v1,...,vj ]) = 0.

Extend the function Cone{v}∗Y linearly.

We check that the cone equation holds for the above function. In the case of [v0, . . . , vj ] ∈
−→
Y (j)

this is due to (1). For {v1, . . . , vj} ∈ Y , we note that

∂j+1Cone{v}∗Y (1[v,v1,...,vj ]) + Cone{v}∗Y (∂j1[v,v1,...,vj ]) =

0 + Cone{v}∗Y (1[v1,...,vj ])− Cone{v}∗Y ([v, ∂j−1[v1, . . . , vj ]) =

0 + 1[v,v1,...,vj ] + 0 = 1[v,v1,...,vj ]

as needed. Thus, by Observation 2.7, the above function is a k-cone function and it is easy to see
that Radj(Cone{v}∗Y ) ≤ 1 for every −1 ≤ j ≤ k.
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Remark 2.12. We note that in the above construction, the cone function is well-defined for every
k, i.e., it is well-defined even in the cases where k ≥ dim({v} ∗ Y ).

Given a simplicial complex X with {v0, . . . , vj1}, {u0, . . . , uj2} ∈ X such that {v0, . . . , vj1} ∩
{u0, . . . , uj2} = ∅ and {v0, . . . , vj1} ∪ {u0, . . . , uj2} ∈ X, we define for σ = [v0, . . . , vj1 ] and τ =
[u0, . . . , uj2 ],

[σ, τ ] = [v0, . . . , vj1 , u0, . . . , uj2 ] ∈
−→
X (j1 + j2 + 1)

and
[1σ,1τ ] = 1[σ,τ ].

For X = Y1 ∗ Y2, we note that for every σ ∈
−→
Y1(j1) and τ ∈

−→
Y2(j2), [1σ,1τ ] is well-defined. Also

note that for σ and τ as above,

∂j1+j2+1[1σ,1τ ] = [∂j11σ,1τ ] + (−1)j1+1[1σ, ∂j21τ ].

Extending this equation linearly on Cj1(Y1;Z) and Cj2(Y2;Z) yields that for every A1 ∈ Cj1(Y1;Z)
and every A2 ∈ Cj2(Y2;Z),

∂j1+j2+1[A1, A2] = [∂j1A1, A2] + (−1)j1+1[A1, ∂j2A2]. (2)

We note that this equation is actually a generalization of (1) above.
Furthermore, observe that for supp([A1, A2]) = supp(A1)× supp(A2).
The main idea of following Proposition is taken from P. Wild’s PhD Thesis [Wil22] and we

claim no originality here.

Proposition 2.13. Let Y1, Y2 be finite simplicial complexes of dimension n1, n2 correspondingly.

Assume that for i = 1, 2 there is an ni-cone function ConeYi and constants R
(i)
j ∈ N,−1 ≤ j ≤ ni−1

such that Radj(ConeYi) ≤ Rij . Then there is an (n1 + n2)-cone function ConeY1∗Y2 such that for
every −1 ≤ j ≤ n1 + n2,

Radj(ConeY1∗Y2) ≤

{
max−1≤j1≤j R

(1)
j1

j < n1

max{max−1≤j1≤n1−1R
(1)
j1
, ((n1 + 1)R

(1)
n1−1 + 1)R

(2)
j−n1−1} n1 ≤ j ≤ n1 + n2

.

Proof. Let v be the apex of ConeY1 . Define

ConeY1∗Y2(1∅) = 1[v].

Let −1 ≤ j1 ≤ n1 and −1 ≤ j2 ≤ n2 such that 0 ≤ j1 + j2 + 1 ≤ n1 + n2. For σi ∈
−→
X (ji), i = 1, 2,

we define

ConeY1∗Y2(1[σ1,σ2]) =

{
[ConeY1(1σ1),1σ2 ] dim(σ1) < n1

(−1)n1+1[1σ1 − ConeY1(∂n11σ1),ConeY2(1σ2)] dim(σ1) = n1

and extend it linearly.
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We will check that the cone equation is fulfilled. We note that by linearity,

ConeY1∗Y2(∂j1+j2+11[σ1,σ2]) =

ConeY1∗Y2([∂j11σ1 ,1σ2 ]) + (−1)j1+1ConeY1∗Y2([1σ1 , ∂j21σ2 ]) ={
[ConeY1(∂j11σ1),1σ2 ] + (−1)j1+1[ConeY1(1σ1), ∂j21σ2 ] dim(σ1) < n1

[ConeY1(∂n11σ1),1σ2 ] + (−1)n1+1(−1)n1+1[1σ1 − ConeY1(∂n11σ1),ConeY2(∂j21σ2)] dim(σ1) = n1
=

{
[ConeY1(∂j11σ1),1σ2 ] + (−1)j1+1[ConeY1(1σ1), ∂j21σ2 ] dim(σ1) < n1

[ConeY1(∂n11σ1),1σ2 ] + [1σ1 − ConeY1(∂n11σ1),ConeY2(∂j21σ2)] dim(σ1) = n1
.

Assume first that dim(σ1) < n1. Then

∂j1+j2+2ConeY1∗Y2(1[σ1,σ2]) =
(2)

[∂j1+1ConeY1(1σ1),1σ2 ] + (−1)j1+2[ConeY1(1σ1), ∂j21σ2 ] =

[1σ1 −ConeY1(∂j11σ1),1σ2 ] + (−1)j1+2[ConeY1(1σ1), ∂j21σ2 ] =

[1σ1 ,1σ2 ]−
(
[ConeY1(∂j11σ1),1σ2 ] + (−1)j1+1[ConeY1(1σ1), ∂j21σ2 ]

)
=

1[σ1,σ2] − ConeY1∗Y2(∂j1+j2+11[σ1,σ2]).

Next, assume that dim(σ1) = n1. Note that

∂n1 (1σ1 − ConeY1(∂n11σ1))) = ∂n11σ1 − (∂n11σ1 −ConeY1(∂n1−1∂n11σ1)) = 0. (3)

Then

∂n1+j2+2 ConeY1∗Y2(1[σ1,σ2]) =
(2)

(−1)n1+1[∂n1 (1σ1 − ConeY1(∂n11σ1)) ,ConeY2(1σ2)]+

(−1)n1+1(−1)n1+1[1σ1 − ConeY1(∂n11σ1), ∂j2+1 ConeY2(1σ2)] =
(3)

[1σ1 − ConeY1(∂n11σ1), ∂j2+1ConeY2(1σ2)] =

[1σ1 − ConeY1(∂n11σ1),1σ2 −ConeY2(∂j21σ2)] =

[1σ1 − ConeY1(∂n11σ1),1σ2 ]− [∂n1+1ConeY1(1σ1),ConeY2(∂j21σ2)] =

[1σ1 ,1σ2 ]− ([ConeY1(∂n11σ1),1σ2 ] + [∂n1+1ConeY1(1σ1),ConeY2(∂j21σ2)]) =

1[σ1,σ2] −ConeY1∗Y2(∂j1+j2+11[σ1,σ2]).

Thus, the cone equation holds.

Let 0 ≤ j ≤ n1+n2. Then every σ ∈
−→
X (j) is of the form σ = [σ1, σ2] where σi ∈

−→
X (ji), i = 1, 2

and j1 + j2 + 1 = j. Note that j2 ≥ −1 and thus j1 ≤ j. In particular, if j < n1, then j1 < n1.
For such j1, j2, it holds that if j1 < n1, then

|supp(ConeY1∗Y2(1[σ1,σ2]))|≤ R
(1)
j1
.

If j1 = n1, then j1 = j − n1 − 1 and

|supp(ConeY1∗Y2(1[σ1,σ2]))|≤ |supp(1σ1 − ConeY1(∂n11σ1))|R
(2)
j2

≤ ((n1 + 1)R
(1)
n1−1 + 1)R

(2)
j−n1−1.

Combining these bounds yields the bound stated above for Radj(ConeY1∗Y2).
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3 Constructing a cone function be adding vertices

The idea is to construct a cone function for a given complex X, by starting with a given subcomplex
for which we have a cone function and adding a set of vertices which is “well-behaved”. The exact
formalism of this idea is given in Theorem 3.2 that can be thought of as a special version of the
Mayer-Vietoris theorem for cone functions.

Definition 3.1. For a complex X, a subcomplex X ′ ⊆ X is called full, if for every v0, . . . , vk ∈ X ′,
if {v0, . . . , vk} ∈ X, then {v0, . . . , vk} ∈ X ′.

Theorem 3.2. Let X be an n-dimensional simplicial complex and X ′ be a full subcomplex. Assume
there is an (n− 1)-cone function ConeX′ and constants R′

k ∈ N,−1 ≤ j ≤ n− 1 such that for every
−1 ≤ j ≤ n−1, Radj(ConeX′) ≤ R′

j . Also let W ⊆ X(0) be a set of vertices such that the following
holds:

1. W ∩X ′ = ∅.

2. For every w1, w2 ∈W , {w1, w2} /∈ X(1).

3. For every w ∈W , Xw ∩X ′ is a non-empty simplicial complex.

4. There are (n − 2)-cone functions ConeXw∩X′ , w ∈ W and constants R′′
j ∈ N,−1 ≤ k ≤ n− 2

such that for every w ∈W and every −1 ≤ j ≤ n− 2, Radj(ConeXw∩X′) ≤ R′′
j

Let X ′ ∪W be the full subcomplex of X spanned by X ′(0) ∪W . Then there is an (n − 1)-cone
function ConeX′∪W such that for every −1 ≤ j ≤ n− 1, Radj(ConeX′∪W ) ≤ R′′

j−1(R
′
j + 1).

Proof. We will define ConeX′∩W by “adding” the cone functions of Xw ∩X ′, w ∈W to ConeX′ .
We note that by linearity and Observation 2.7, it is enough to define the cone function on

every 1[v0,...,vj ] for every 0 ≤ j ≤ n − 1 and every [v0, . . . , vj ] ∈
−−−−−→
X ′ ∪W (j). We also note that by

our assumptions, every [v0, . . . , vj ] ∈
−−−−−→
X ′ ∪W (j) is either in

−→
X ′(j) or that it has a single vertex in

W . Thus, it is enough to define the cone function on 1[v0,...,vj ] in the following two cases: either

[v0, . . . , vj ] ∈
−→
X ′(j) or v0 = w ∈W and [v1, . . . , vj ] ∈

−−−−−→
Xw ∩X ′(j − 1).

After the preceding discussion, we define an (n−1)-cone function as a linear continuation of the
following: First, we define ConeX′∪W (∅) = 1[v] where v is the apex of the cone function ConeX′ .

Second, for every 0 ≤ j ≤ n− 1 and every [v0, . . . , vj ] ∈
−→
X ′(j), we define

ConeX′∪W (1[v0,...,vj ]) = ConeX′(1[v0,...,vj ]).

Last, for every 0 ≤ j ≤ n− 1, every w ∈W and every [v1, . . . , vj ] ∈
−−−−−→
Xw ∩X ′(j − 1), we define

ConeX′∪W (1[w,v1,...,vj ]) = ConeX′(ConeXw∩X′(1[v1,...,vj ]))− [w,ConeXw∩X′(1[v1,...,vj ])].

We need to verify that the cone equation holds for every 1[w,v1,...,vj ].
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We will start by computing ConeX′∪W (∂j1[w,v1,...,vj ]):

ConeX′∪W (∂j1[w,v1,...,vj ]) =
(1)

ConeX′∪W (1[v1,...,vj ])− ConeX′∪W ([w, ∂j−11[v1,..,.vj]]) =

ConeX′(1[v1,...,vj ])− ConeX′(ConeXw∩X′(∂j−11[v1,...,vj ]))+

[w,ConeXw∩X′(∂j−11[v1,...,vj ])] =
the cone equation for ConeXw∩X′

ConeX′(1[v1,...,vj ])− ConeX′(1[v1,...,vj ]) + ConeX′(∂j ConeXw∩X′(1[v1,...,vj ]))+

[w,ConeXw∩X′(∂j−11[v1,...,vj ])] =

ConeX′(∂j ConeXw∩X′(1[v1,...,vj ])) + [w,ConeXw∩X′(∂j−11[v1,...,vj ])].

Using this computation, we will verify the cone equation for ConeX′∪W (below we use the cone
equation for ConeX′ and ConeXw∩X′ without noting it):

∂j+1ConeX′∪W (1[w,v1,...,vj ]) =

∂j+1ConeX′(ConeXw∩X′(1[v1,...,vj ]))− ∂j+1[w,ConeXw∩X′(1[v1,...,vj ])] =

− ConeX′(∂j ConeXw∩X′(1[v1,...,vj ])) + ConeXw∩X′(1[v1,...,vj ])−(
ConeXw∩X′(1[v1,...,vj ])− [w, ∂j ConeXw∩X′(1[v1,...,vj ])]

)
=

− ConeX′(∂j ConeXw∩X′(1[v1,...,vj ]))− [w,ConeXw∩X′(∂j−11[v1,...,vj ])] + [w,1[v1,...,vj ]] =

− ConeX′∪W (∂j1[w,v1,...,vj ]) + 1[w,v1,...,vj ]

as needed.
In order to conclude the proof, we will show that Radn−1

j (ConeX′∪W ) ≤ R′′
j−1(R

′
j + 1). For

[v0, . . . , vj ] ∈
−→
X ′(j),

|supp(ConeX′∪W (1[v0,...,vj ]))|= |supp(ConeX′(1[v0,...,vj ]))|≤ R′
k ≤ R′′

j−1(R
′
j + 1).

For [w, v1, . . . , vj ] ∈
−−−−−→
X ′ ∪W (k) where w ∈W ,

|supp(ConeX′∪W (1[v0,...,vj ]))|≤

|supp(ConeX′(ConeXw∩X′(1[v1,...,vj ])))|+|supp([w,ConeXw∩X′(1[v1,...,vj ])])|≤

R′
jR

′′
j−1 +R′′

j−1 = R′′
j−1(R

′
j + 1)

as needed.

4 The Kac–Moody–Steinberg complexes

In this section, we describe the families of simplicial complexes, for which we will prove that they give
rise to cosystolic expanders. The main source, what we call KMS complexes, are infinite families
of coset complexes over finite quotients of so called Kac–Moody–Steinberg groups. They where
introduced in [GdPVB24], where it was shown that they are spectral high-dimensional expanders.
Our methods also apply to the complexes introduced in [DLYZ23], since the links of these complexes
are isomorphic to links of certain KMS complexes.
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4.1 Root systems and Chevalley groups

We start by recalling some facts about generalized Cartan matrices, the associated root systems
and Chevalley groups. These are the building blocks of KMS groups.

Most of the structure of the KMS groups is encoded in its generalized Cartan matrix, which
also gives rise to a Dynkin diagram and a root system.

Definition 4.1. A generalized Cartan matrix (GCM) is a matrix A = (Aij)i,j∈I ∈ Matn(Z) such
that Aii = 2 for all i ∈ I, Aij ≤ 0 for all i 6= j ∈ I and Aij = 0 ⇐⇒ Aji = 0.

Every GCM A = (Ai,j)i,j∈I gives rise to a Dynkin diagram in the following way. As vertex
set, we take the index set I and two vertices i, j are connected by |Ai,j | edges if Ai,jAj,i ≤ 4
and |Ai,j |≥ |Aj,i|, and these edges are equipped with an arrow pointing towards i if |Ai,j |> 1. If
Ai,jAj,i > 4, the vertices i and j are connected by a bold-faced labelled edge with the ordered pair of
integers |Ai,j |, |Ai,j |.

A GCM is irreducible if there exists no non-trivial partition I = I1 ∪ I2 such that Ai1,i2 = 0 for
all i1 ∈ I1, i2 ∈ I2.

Definition 4.2. Let A be a (d+1)×(d+1) generalized Cartan matrix with index set I = {0, . . . , d},
and let J ⊆ I.

(i) The subset J is called spherical if AJ = (Ai,j)i,j∈J is of spherical type, meaning that the
associated Coxeter group (see e.g. [Mar18, Proposition 4.22]) is finite (see e.g. [Bou08,
Chapter 6.4.1]). Given n ≥ 2, A is n-spherical if every subset J ⊆ I of size n is spherical.

(ii) We denote by QA the set of spherical subsets of I associated to the generalized Cartan matrix
A.

(iii) A generalized Cartan matrix A is purely n-spherical if every spherical subset J ⊆ I is con-
tained in a spherical subset of size n. (In particular, no set of size n + 1 is spherical for a
purely n-spherical generalized Cartan matrix.)

(iv) Analogously, we call a GCM n-classical if each irreducible factor of AJ = (Ai,j)i,j∈J is of
classical type Ak, Bk, Ck,Dk (see e.g. [Bou08, Chapter 6.4.1]) for each J ⊆ I with |J | ≤ n.

(v) To a generalized Cartan matrix A we can associate the following sets:

• a set of simple roots Π = {αi | i ∈ I},

• a set of real roots Φ ⊆
⊕

i∈I Zαi,

• two sets, one of positive and one of negative real roots Φ+ =
⊕

i∈I Nαi∩Φ,Φ− = −Φ+ .

Note that Φ = Φ+ ⊔ Φ−. More details can be found e.g. in [Mar18, Chapter 3.5].

Remark 4.3. (i) Irreducible finite root systems have been classified. All possible diagrams are
given in Figure 1.

(ii) The n-classical diagrams, with n ≥ 3 are precisely the non-spherical rank n + 1 diagrams
which are n-spherical but not one of the following

• affine diagrams Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2,
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Classical types





An

Bn

Cn

Dn

Exceptional types





E6, E7, E8

F4

G2

Figure 1: The Dynkin diagrams of irreducible spherical root systems

• compact hyperbolic diagram .

All rank n+1, n-spherical diagrams have been classified and are precisely the affine diagrams
and the compact hyperbolic diagrams, the latter have rank at most 5, where the diagram of
rank 5 is exactly the one that we have to exclude to get n-classicality. See e.g. [Hum90,
Chapter 6.9] for the classification result.

Definition 4.4. Corresponding to any irreducible, spherical GCM Å with root system Φ̊ of rank
at least 2, and any finite field K, there is an associated universal (or simply connected) Chevalley
group, denoted ChevÅ(K). Abstractly, it is generated by symbols xα(s) for α ∈ Φ̊ and s ∈ K,
subject to the relations

xα(s)xα(u) = xα(s+ u)

[xα(s), xβ(u)] =
∏

i,j>0

xiα+jβ

(
Cα,βij siuj

)
(for α+ β 6= 0)

hα(s)hα(u) = hα(su) ( for s, u 6= 0),

where hα(s) = nα(s)nα(−1)

and nα(s) = xα(s)x−α
(
−s−1

)
xα(s).

Note that the Cα,βij are integers called structure constants that can be found in [Car89].

Remark 4.5. Let K be a field and let K[t] denote the polynomial ring in one variable over K. The
simply-connected Chevalley group ChevÅ(K[t]) is, similar to the case of a Chevalley group over a

field, generated by elements xα(s) for α ∈ Φ̊, s ∈ K[t] that satisfy the relations above, where for
the third relation we have to add the extra assumption that u, s are invertible in K[t]. This can be
found e.g. in [Reh75].
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4.2 Kac–Moody–Steinberg groups

We can now put the ingredients together to define what a Kac–Moody–Steinberg group is and
present some of its properties. For more details, see [GdPVB24, Chapter 3] and references therein.

Definition 4.6. Let K be a field. Let A = (Ai,j)i,j∈I be a GCM over the index set I which is
2-spherical. Let QA = {J ⊆ I | AJ := (Aij)i,j∈J is spherical}. Let Φ be the root system associated
to A with simple roots Π = {αi | i ∈ I}. For J ∈ QA set

UJ := 〈xαi
(s) | s ∈ K, i ∈ J〉 ≤ ChevAJ

(K)

the group generated by all simple roots in the Chevalley group of type AJ over K. Note that if
L ⊂ J then we have a natural inclusion UL →֒ UJ by sending xαi

(s) ∈ UL to the same generator in
UJ . The KMS group of type A over K is defined as the free product of the UJ , J ∈ QA modulo the
natural inclusions:

UA(K) = ∗
J∈QA

UJ/(UL →֒ UJ , L ⊆ J).

Note that UJ →֒ UA(K) and we will denote the image of UJ in UA(K) again by UJ . These
subgroups are called the local groups of UA(K). For i, j ∈ I we will write Ui := U{i} and Ui,j =
U{i,j}.

Remark 4.7. For two roots α, β ∈ Φ we write ]α, β[N= {n1α+ n2β ∈ Φ | n1, n2 ∈ N∗} and [α, β]N =
]α, β[N ∪ {α, β}.

We have the following abstract presentation for the KMS groups:

UA(K) =
〈
uβ(t) for t ∈ K, i, j ∈ I, β ∈ [αi, αj ]N | R

〉

where the set of relations R is defined as:
for all i, j ∈ I, {α, β} ⊆ [αi, αj ]N, t, u ∈ K:

uα(t)uα(s) = uα(t+ s)

[uα(t), uβ(u)] =
∏

γ=kα+lβ∈]α,β[N
uγ

(
Cαβk,l t

kul
)
.

The constants Cα,βk,l are the same structure constants as in the presentation of the Chevalley group.
Since A is 2-spherical, the subgroups Uβ, for β ∈ [αi, αj ], are contained in the group generated

by the root groups Uαi
, Uαj

(see [Abr96, Proposition 7]).

4.3 KMS complexes

In this section, we recall some facts about coset complexes and put everything together to define
KMS complexes.

KMS complexes are coset complexes. More details on coset complexes can be found for example
in [KO23], and we will only give a brief overview.

Definition 4.8. Let G be a group and H = (H0, . . . ,Hn) be a family of subgroups of G. Then the
coset complex CC(G; (H0, . . . ,Hn)) is defined to be the simplicial complex with
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• vertex set
⊔n
i=0G/Hi

• a set of vertices {g1Hi1 , . . . , gkHik} forms a (k − 1)-simplex in CC(G;H) if and only if⋂k
j=1 gjHij 6= ∅.

Note that the set of vertices is partitioned into n + 1 subsets G/Hi for i = 0, . . . , n such that
for any simplex σ ∈ CC(G;H) we have |σ ∩G/Hi|≤ 1 for all i. In that case, we say that CC(G;H)
is a (n+ 1)-partite simplicial complex.

Definition 4.9. The type of a simplex {g1Hi1 , . . . , gkHik} in CC(G;H) is the set of indices {i1, . . . , ik} ⊆
{0, . . . , n}. Given a type ∅ 6= T ⊆ {0, . . . , n} we write

HT :=
⋂

i∈T
Hi and set H∅ := 〈H0, . . . ,Hn〉 ≤ G.

The following well-known fact will be very useful.

Proposition 4.10. Let σ be a face in CC(G,H) of type T 6= ∅. Then the link of σ is isomorphic
to the coset complex CC

(
HT ,

(
HT∪{i} : i /∈ T

))
.

KMS complexes are coset complexes over certain finite quotients of KMS groups. The precise
definition is as follows.

Definition 4.11. Let A be a GCM over the index set I which is (|I|−1)-spherical but non-spherical.
Let K be a finite field of size q ≥ 4. Let φ : UA(K) → G be a finite quotient of UA(K) such that

1. φ|UJ
is injective for all J ∈ QA (i.e. φ is injective on the local groups),

2. φ(UJ ∩ UL) = φ(UJ) ∩ φ(UL) for all J,L ∈ QA.

Then we set
X = CC(G; (φ(UI\{j}))j∈I)

and call X a KMS complex of type A over K.

Theorem 4.12. [GdPVB24, Theorem 4.3] Let A be a GCM over the index set I which is non-
spherical but |I| − 1-spherical. Let K be a finite field of size q ≥ 4. Let φi : UA(K) → Gi, i ∈ I
be family of finite quotients of UA(K) such that Xi = CC(Gi, (φi(UI\{j}))j∈I), i ∈ N is a family of

KMS complexes and |Gi|
i→∞
−→∞. If q is such that

√
3
q ≤ 1

|I|−1 then the family (Xi)i∈N is a family

of bounded degree local spectral expanders.
Moreover, if q ≫ (|I|−1)2, then the family (Xi)i∈N is a family of bounded degree 2√

q -local spectral

expanders.

Example 4.13. The following is an example of an n-dimensional, n-classical KMS complex. Con-
sider SLn+1(Fq[t]) where n ≥ 2 and q is an odd prime power such that q ≥ 5. For 1 ≤ i, j ≤
n + 1, i 6= j and f ∈ Fq[t], we denote ei,j(f) ∈ SLn+1(Fq[t]) to be the matrix with 1’s along the
main diagonal, f in the (i, j)-th entry and 0’s in all other entries. Let

B = {ei,i+1(1); i = 1, . . . n} ∪ {en+1,1(t)}

20



and let U(Fq) < SLn+1(Fq[t]) be the subgroup generated by B, i.e.

U(Fq) = 〈e1,2(1), e2,3(1), . . . , en,n+1(1), en+1,1(t)〉.

We define subgroups H0, . . . ,Hn < U(Fq) as

H0 = 〈e1,2(1), e2,3(1), . . . , en,n+1(1)〉 = 〈B \ {en+1,1(t)}〉,

H1 = 〈e2,3(1), . . . , en,n+1(1), en+1,1(t)〉 = 〈B \ {e1,2(1)}〉,

...

Hi = 〈B \ {ei,i+1}〉,

...

Hn = 〈e1,2(1), e2,3(1), . . . , en−1,n(1), en+1,1(t)〉,

and denote H = (H0, . . . ,Hn).
Let f ∈ Fq[t] be an irreducible polynomial of degree s > 1. Denote φf : SLn+1(Fq[t]) →

SLn+1(Fq[t]/(f)) ∼= SLn+1(Fqs) defined as follows: For every matrix A ∈ SLn+1(Fq[t]), A = (Ai,j)
where Ai,j ∈ Fq[t] define

φf (A) = (Ai,j + (f)).

Restricting φf to U(Fq), we get Gf = φf (U(Fq)) which is a finite quotient of U(Fq). It is proven in
[GdPVB24], that φf is injective on H0, . . . ,Hn. The KMS complex of Gf = φf (U(Fq)) is defined
to be the coset complex Xf = CC(Gf ,Hf ), where Hf = (φf (H0), . . . , φf (Hn)).

Remark 4.14. Similar examples of n-classical KMS complexes can be constructed for all Chevalley
groups of classical type, see [GdPVB24, Chapter 5] for more details.

5 Describing classical buildings and their opposition complexes

In the first part of this section, we describe buildings and their opposition complexes from a group
theoretic view point. In this setting, we show that the links of KMS complexes are opposition
complexes of spherical buildings. In the second part, we describe a more geometric view point
using flag complexes. This context will be used to show that opposition complexes are coboundary
expanders.

5.1 Buildings and BN-pairs

One way to define a building is as a simplicial complex with a family of subcomplexes called
apartments. Each apartment isomorphic to the same Coxeter complex. The type of the Coxeter
complex, which can be described by a root system/ a GCM, is also what we call the type of the
building. Each two simplices of the building have to be contained in a common apartment and each
two apartments are isomorphic with an isomorphism that acts as the identity on the intersection.

One way to construct buildings is via groups with BN-pair (and for thick, irreducible buildings
of dimension 2 and larger, all buildings can be constructed that way, as was proven by Jacques Tits
in [Tit74]).

Given a group G, a BN-pair of G is a pair of subgroups B,N ≤ G satisfying certain properties,
see [AB08, Definition 6.55]. In particular, G = BN and setting T = B∩N we have that W = N/T
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admits a set of generators S, such that (W,S) is a Coxeter system. W is also called the Weyl group
of the BN-pair. To describe the building, we need to define the parabolic subgroups PJ := B〈J〉B
for J ⊂ S (here 〈J〉 is the subgroup generated by the elements of J inside W ). The building can
then we described as the following coset complex:

∆(G,B) := CC(G; (PS\{j})j∈S).

Since PJ∩PL = PJ∩L for any J,L ⊆ S we can see ∆(G,B) also as the poset {gPJ | g ∈ G, J ⊆ S}
ordered by reversed inclusion. Then the simplex {gPS\{j} | j ∈ J} ∈ CC(G; (PS\{j})j∈S) corresponds
to gPS\J for J ⊆ S, g ∈ G. In particular, the set of maximal simplices, called chambers, corresponds
to G/B.

If the Weyl group is finite, we call the building spherical. This coincides with our definition of
calling a GCM/root system spherical. A finite Weyl group has a unique longest element denoted
by w0, where longest means that is generated by the largest number of generators, counted with
multiplicities.

Two chambers gB, hB, g, h ∈ G are called opposite if and only if g−1h ∈ Bw0B, denoted by
gB op hB.

Given a simplex σ ∈ ∆(G,B), the complex opposite σ is defined as follows:

∆0(σ) := {τ ∈ ∆(G,B) | there exist chambers c, d ∈ ∆(G,B) such that τ ⊆ c, σ ⊆ d, c op d}.

To see the connection between opposition complexes and the links of KMS complexes, note that
every Chevalley group has a BN-pair in the following way. Let A = (Aij)i,j∈I be a spherical GCM
of rank at least 2, K a field and G = ChevA(K) = 〈xα(λ) | α ∈ Φ, λ ∈ K〉, using the notation of
Definition 4.4. We set

Uα := 〈xα(λ) | λ ∈ K〉, α ∈ Φ, U+ := 〈Uα | α ∈ Φ+〉, T := 〈hα(λ) | α ∈ Φ, λ ∈ K〉,

B := U+T, N := 〈T, n−αi
(−λ−1); i ∈ I, λ ∈ K∗〉.

For example [AB08, Theorem 7.115] shows that this is indeed a BN-pair.
Let C0 = 1B denote the fundamental chamber of ∆(G,B) where G is a Chevalley group as

described above. Recall that w0 denotes the longest element on the Weyl group W . It satisfies
Bw0B = U+w0B. We can describe the opposition complex in this set-up as

∆0(C0) = {gPJ | g ∈ G, J ⊆ S : ∃h ∈ U+w0B : gPJ ⊇ hB}

= {gPJ | ∃h ∈ U+w0B : h ∈ gPJ}

= {hPJ | h ∈ U+w0B}

= {uw0PJ | u ∈ U+}.

This leads to the following proposition.

Proposition 5.1. [GdPVB24, Chapter 3.2] Let G be a Chevalley group with BN-pair as described
above. Then

CC(U+, (UI\{i})i∈I) ∼= ∆0(C0).

Since we assume that A is 2-spherical and |K| ≥ 4 we have U+ = 〈Uα | α ∈ Φ+〉 = 〈Uαi
| i ∈ I〉

(see e.g. the comment before [GdPVB24, Lemma 3.7]). Combining this with the above proposition
and Proposition 4.10 gives the following corollary.
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Corollary 5.2. Let X be a KMS complex, and σ ∈ X a face of dimension less than or equal to
dimX − 2 of type ∅ 6= T ⊂ I. Then

lkX(σ) ∼= ∆0(C0)

where ∆ is the building obtained from the BN-pair structure of the Chevalley group of type AI\T .

5.2 Types of buildings

To each Dynkin diagram with set of vertices I as in Definition 4.1 we can associate a group, called
Coxeter groups, in the following way:

〈si; i ∈ I | s2i = 1, (sisj)
mij = 1; i, j ∈ I, i 6= j〉

where

i j
⇒ mij = 2,

i j
⇒ mij = 3

i j

⇒ mij = 4,

i j

⇒ mij = 6.

Note that mij is defined to be symmetric in i, j, this implies that the root systems of type Bn and
Cn give rise to the same Coxeter group. The Coxeter complex associated to the Coxeter group W
with set of generators S can be viewed as the coset complex

CC(W, (〈S \ {t}〉)t∈S).

Thus, a building of type X means that we consider a building where the underlying Coxeter
complex is of type X. In particular, since type Bn and Cn give rise to the same Coxeter complex,
they also determine the same type of building.

Note that if we construct a building from a BN-pair of a Chevalley group with underlying root
system of some type X, then the building will have the same type.

More details can be found in Tits original work on the classification of spherical buildings [Tit74]
or for example in [AB08].

5.3 Geometric constructions of buildings

In the following section, we describe how buildings of type An, Cn and Dn can be constructed as
flag complexes of certain sets equipped with an incidence relation. We furthermore describe the
opposition complexes in this set-up. The general framework is as follows.

Definition 5.3. Let X be a set and let I ⊆ X × X be a reflexive and symmetric relation. For
a, b ∈ X we write aIb if and only if (a, b) ∈ I and call a and b incident. The structure gives rise to
the following simplicial complex, called the flag complex of X:

Flag(X) = {σ ⊆ X | ∀a, b ∈ σ : aIb}.
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5.3.1 Buildings of type An

Let n ∈ N, n ≥ 1. Any building of type An can be described in the following way, see e.g.
[Tit74]. Let K be a field or skew field, V an (n + 2)-dimensional vector space over K. Set
X := X(V ) := {0 < U < V | U is a K-subspace of V }. Two subspaces U,W ∈ X are called
incident if U ⊆W or W ⊆ U . Then ∆ = FlagX is a building of type An.

To describe the opposition complex in this context, we need the following notation, see [Abr96,
Definition 9].

Definition 5.4. 1. Two subspaces U,W of V are called transversal (in V ) if U ∩W = 0 or
U +W = V . If this is the case, we write U ⋔V W or simply U ⋔W .

2. Let E be a set of subspaces of V . Then we write U ⋔ E if U ⋔ E for all E ∈ E. We set

XE (V ) := {U ∈ X | U ⋔ E} TE(V ) = FlagXE(V ).

We get the following result.

Proposition 5.5. [Abr96, Corollary 12] For any simplex σ = {E1 < · · · < Er} ∈ ∆ set E(σ) =
{Ei | 1 ≤ i ≤ r}. Then

∆0(σ) = TE(σ)(V ).

Definition 5.6. We denote by CA the class of all simplicial complexes TE (V ) where dim(TE (V )) =
n ≥ 0, K is a (skew) field, V an (n + 2)-dimensional vector space over K, E is a finite set
of subspaces of V such that if we set ej = |{E ∈ E | dimE = j}| we have

∑n+1
j=1

( n
j−1

)
ej ≤ |K|.

Furthermore, TE(V ) is defined as described in Definition 5.4.

5.3.2 Hermitian and pseudo-quadratic forms

In this part, we recall facts about hermitian and pseudo-quadratic forms that are needed to describe
the buildings of type Cn and Dn. We follow [Abr96, Chapter 5], who in turn mostly follows [Tit74].

Let K be a skew field, σ : K → K,a 7→ aσ be an involution, i.e. an anti-automorphism
of K such that σ2 = idK . Let ε ∈ {1,−1} ⊂ K. If σ 6= idK then we require ε = −1. Let
V be a right K-vector space of dimension m ∈ N ∪ {∞}. Let Kσ,ε := {α− ασε | α ∈ K} and
Kσ,ε := {α ∈ K | α+ ασε = 0}. Let Λ be a form parameter relative to (σ, ε), i.e. Λ is a subgroup
of (K,+) satisfying Kσ,ε ⊆ Λ ⊆ Kσ,ε and ασΛα ⊆ Λ for all α ∈ K.

Let f : V ×V → K be a (σ, ε)-hermitian form, i.e. f is biadditive and for all x, y ∈ V, a, b ∈ K we
have f(xa, yb) = aσf(x, y)b and f(y, x) = f(x, y)σε. Let Q : V → K/Λ be a (σ, ε)-quadratic form
with associated (σ, ε)-hermitian form f , i.e. Q(xa) = aσQ(x)a+ Λ and Q(x+ y)−Q(x)−Q(y) =
f(x, y) + Λ for all x, y ∈ V, a ∈ K. If Λ = K we require that f is alternating. If Λ 6= K then f is
uniquely defined by Q.

For M ⊆ V we write M⊥ := {x ∈ V | f(x,M) = 0}. A subspace U < V is called

• non-degenerate if U ∩ U⊥ = 0,

• totally degenerate if U ⊆ U⊥,

• anisotropic if 0 /∈ Q(U \ {0}),

• isotropic if 0 ∈ Q(U \ {0}),
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• totally isotropic if U ⊆ U⊥ and Q(U) = 0.

We require that there is at least one finite-dimensional maximal totally isotropic subspace. In that
case, all maximal totally isotropic subspace have the same dimension. We denote this dimension
by n and call it the Witt index of (V,Q, f). We require 0 < n < ∞. Furthermore, we require that
V ⊥ = 0. We say that the triple (V,Q, f) is a pseudo-quadratic space if it is of the form described
above.

If it additionally satisfies (m,Λ) 6= (2n, 0) then we say (V,Q, f) is a thick pseudo-quadratic
space.

Note that if (V,Q, f) is a thick pseudo-quadratic space and K is a finite field, then dimV ≤
2n + 1. In general, if one only considers finite fields, especially of characteristic different from 2,
the set-up can be substantially simplified, see [AB08, Remark 9.3,9.4].

5.3.3 Buildings of type Cn

Let n ∈ N, n ≥ 1 and (V,Q, f) be a thick pseudo-quadratic space with Witt index n. Set X :=
X(V ) = {0 < U < V | U is totally isotropic} with incidence relation given by containment as
in the An case and ∆ = FlagX. Then ∆ is a thick building of type Cn and every classical Cn
building can be obtained in this way (here classical means that the links of type A2 correspond to
Desarguesian planes, which is always the case for n ≥ 4), see [Tit74, Theorem 8.22].

Definition 5.7. Set U := {0 ≤ U ≤ V | dimU <∞},U⊥ := {U⊥ | u ∈ U} and W := U ∪ U⊥.
Let E be a finite subset of W such that E⊥ = E. Assume K = Fq is a finite field. Set

Ej := {E ∈ E | dimE = j}, ej := |Ej| and e
(s)
h :=

∑2s
j=0

(2s
j

)
eh+j for h ∈ N, s ∈ N0 and h+ 2s < m.

We define

• N(E) := e
(n−1)
1 if f is alternating (⇒ m = 2n) and Q = 0,

• N(E) :=
(
e
(n−1)
1

)2
if m = 2n and σ 6= id,

• N(E) := 2e
(n−1)
2 if m = 2n+ 1,

• N(E) := max
{
e
(n−1)
2 + e

(n−1)
3 + 1, 2e

(n−1)
3

}
if m = 2n+ 2.

Definition 5.8. For a set E of subspaces of V we define, similar to Definition 5.4,

XE (V ) := {U ∈ X | U ⋔ E}, TE(V ) = FlagXE (V ).

Proposition 5.9. [Abr96, Corollary 15] For any simplex τ = {E1 < · · · < Er} ∈ ∆ set E(τ) =
{Ei, E

⊥
i | 1 ≤ i ≤ r}. Then ∆0(τ) = TE(τ)(V ).

Definition 5.10. WithCC we denote the class of simplicial complexes TE(V ) where n = dim(TE(V )+
1 ≥ 1, K a (skew) field, (V,Q, f) is a thick pseudo-quadratic space with Witt index n, E a finite
subset of W (see Definition 5.7) such that E⊥ = E. If K is a finite field, we further require that
|K| ≥ N(E). We set TE(V ) as in Definition 5.8.
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5.3.4 Buildings of type Dn

For this section let (V,Q, f) be a pseudo-quadratic space but in the specific case where K is a field,
σ = idK , ε = 1,Λ = 0, V a K-vector space of dimension m = 2n ≥ 4, Q an ordinary quadratic form
and f the corresponding symmetric bilinear form. We further assume that V is non-degenerate
and of Witt index n.

We set as before X = X(V ) = {0 < U < V | U is totally isotropic}. Then ∆ = FlagX is a
weak Cn building, in particular it is not thick, since each totally isotropic subspace of dimension
n−1 is contained in exactly two totally isotropic subspaces of dimension n. Furthermore, the space
Y = {U ∈ X | dimU = n} is partitioned into to sets Y = Y1 ⊔ Y2 such that for U1, U2 ∈ Yi we have
n− dim(U1 ∩U2) ∈ 2Z for i = 1, 2 and for U1 ∈ Y1, U2 ∈ Y2 we have n− dim(U1 ∩U2) ∈ 2Z+1. In
particular, if for U1, U2 ∈ Y we have dim(U1 ∩ U2) = n− 1 then U1 and U2 are in different sets of
the partition.

To obtain a thick building of type Dn we set X̃ = X̃(V ) = {U ∈ X | dimU 6= n − 1} and we
say that U,W ∈ X̃ are incident (write UIW ) if and only if

U ⊆W or W ⊆ U or dim(W ∩ U) = n− 1.

Then ∆̃ = Flag X̃ is desired building. We will write Orifl(X̃) for Flag X̃ to stress that we consider
X̃ not with the usual incidence relation given by inclusion, but with this new one. Note that Orifl X̃
is called the oriflamme complex of X̃.

For n ≥ 4 every building of type Dn is of the form ∆̃ for some field K [Tit74, Proposition 8.4.3].
We also consider the construction for n = 2, 3 in which case we get certain (but not all) buildings
of type D2 = A1 ×A1 and D3 = A3, which where already covered earlier.

To describe the opposition complexes, we need to introduce some further notation.

Definition 5.11. For arbitrary subspaces U,W of V , we define

U ⋔̃VW ⇐⇒ U ⋔V W or (U,W ∈ X̃, U = U⊥,W =W⊥ and dim(U ∩W ) = 1).

For a set E of subsets of V we define (different from Definition 5.4)

XE (V ) = {U ∈ X | U ⋔̃E}, TE(V ) = FlagXE (V )

X̃E (V ) = {U ∈ X̃ | U ⋔̃E}, T̃E(V ) = Orifl X̃E(V )

Proposition 5.12. [Abr96, Corollary 17] Let τ = {E1 < · · · < Er} ∈ ∆̃ and set E(τ) = {Ei, E
⊥
i |

1 ≤ i ≤ r} then ∆̃0(τ) = T̃E(τ)(V ).

6 Coboundary expansion for sub-complexes of spherical buildings

6.1 General induction argument

The general procedure will be similar for all three cases of buildings. We use a quantitative version
of [Abr96, Lemma 22]. We basically only change assumption 1. and the conclusion.

Theorem 6.1. Let C be a class of non-empty simplicial complexes. Assume that for any n ∈
N, n ≥ 1 there exists ℓn ∈ N such that for all κ ∈ C,dimκ = n, there exists a filtration κ0 ⊂ κ1 ⊂
. . . ⊂ κℓ = κ of κ of length ℓ ≤ ℓn such that the following is satisfied (set Vi := {vertices of κi} \
{vertices of κi−1}):
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1. There is an (n− 1)-cone function Coneκ0 such that for ever 0 ≤ j ≤ n− 1,

Radj(Coneκ0) ≤ f(n),

where f : R → R is a function depending only on C.

2. κi is a full subcomplex of κ and for all vertices w1, w2 ∈ Vi we have {w1, w2} /∈ κ, for all
0 ≤ i ≤ ℓ.

3. lkκi(w) ∩ κi−1 is either in C or can be written as the join of two elements from C for any
w ∈ Vi, i ≥ 1.

Then for every n ∈ N0 there exists a constant R(n) such that for every κ ∈ C with dimκ = n we
have: κ has an (n− 1)-cone function Coneκ such that for all −1 ≤ j ≤ n− 1 we have

Radj(Coneκ) ≤ R(n).

We can describe R(n) recursively. We have R(0) = 1. For n ≥ 1, assume R(k) is known for
k < n. Set

S(n) = max
a,b∈N:a+b+1=n

((a+ 1)R(a) + 1)R(b).

Then

R(n) = S(n)ℓnf(n) +

ℓn∑

j=1

S(n)j .

Proof. We will prove the result by induction on the dimension n.
For n = 0, since κ 6= ∅ there exists v ∈ κ(0) and thus we can define a (−1)-cone function via

∅ 7→ 1[v]. Every cone function has (−1)-cone radius = 1, thus we take R(0) = 1.
Fix n ≥ 1 and κ ∈ C,dim(κ) = n with filtration κ0 ⊂ . . . ⊂ κℓ = κ as in the requirements. We

will prove by induction on 0 ≤ i ≤ ℓ, that there is an (n − 1)-cone function Coneκi such that for
every −1 ≤ k ≤ n− 1

Radk(Coneκi) ≤ R(i)(n)

where R(i)(n) is given inductively by

R(0)(n) = f(n), R(i)(n) = S(n)(R(i−1)(n) + 1) = S(n)if(n) +

i∑

j=1

S(n)j .

For i = 0 this follows from Assumption 1. We proceed by induction on i. Fix 1 ≤ i ≤ ℓ
and assume there exists a constant R(i−1)(n) and an (n − 1)-cone function Coneκi−1 such that

Radj(Coneκi−1) ≤ R(i−1)(n) for all −1 ≤ j ≤ n − 1. We want to apply Theorem 3.2 to the
following setting:

X = κ,X ′ = κi−1, ConeX′ = Coneκi−1 , R
′
j = R(i−1)(n), W = Vi = κi(0) \ κi−1(0).

We check that the conditions of the theorem are satisfied.

1. W ∩X ′ = ∅ by definition.
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2. For every w1, w2 ∈W : {w1, w2} 6∈ κi ⊂ κ by assumption.

3. For every w ∈ W, lkX(w) ∩X
′ is a non-empty simplicial complex, since by Assumption 3 we

have lkX(w) ∩X
′ ∈ C or a join of two complexes in C.

4. By Assumption 3, lkX(w) ∩X ′ is either in C or is a join of two elements of C. In the first
case we use the induction hypothesis and get an (n − 2)-cone function ConelkX(w)∩X′ such
that

Radj(ConelkX(w)∩X′) ≤ R(n− 1).

In the second case, we can write lkX(w) ∩ X ′ = A ∗ B for some A,B ∈ C. Set nA =
dimA,nB = dimB then n− 1 ≥ dim(lkX(w) ∩X

′) = nA + nB + 1, hence nA, nB < n. Thus
by induction there exists an (nA−1)-cone function ConeA with Radj(ConeA) ≤ R(nA) for all
−1 ≤ j ≤ nA− 1 and similarly for B. Using Proposition 2.13 we get an (n− 1)-cone function
ConelkX(w)∩X′ such that

Radj(ConelkX(w)∩X′) ≤ ((nA + 1)R(nA) + 1)R(nB) ≤ S(n) for all − 1 ≤ j ≤ n− 2.

Note that we simplified the bound coming from Proposition 2.13 by only considering the
largest possible of the cases. We chose S(n) to be the maximum over all the bounds that can
appear at this step. Note that in particular R(n− 1) ≤ S(n). We set R′′

j = S(n).

Applying Theorem 3.2 we get an (n− 1)-cone function ConeX′∪W such that

Radj(ConeX′∪W ) ≤ R′′
j−1(R

′
j + 1)

which in the original formulation means

Radj(Coneκi) ≤ S(n)(R(i−1)(n) + 1).

Thus we have R(i)(n) = S(n)(R(i−1)(n) + 1) and solving the recursion gives the second expression
of R(i)(n).

Now, since κℓ = κ, we get an (n − 1)-cone function Coneκ with Rad(Coneκ) ≤ R(ℓ)(n). We
would like to set R(n) = R(ℓ)(n). But the bound has to hold for all possible κ ∈ C of dimension
n. Since R(i)(n) is increasing in i, we take R(n) = R(ℓn)(n) = S(n)ℓnf(n) +

∑ℓn
j=1 S(n)

j .

Remark 6.2. Compared to [Abr96, Lemma 22] we changed condition 1. from just asking for κ0
to be contractible to requiring an explicit cone function, and we removed the dependency on the
underlying building, since the theorem also works in this wider generality. In particular, if we want
to show that a certain class, for which Abramenko already showed that it satisfies the assumptions
of [Abr96, Lemma 22], also satisfies the assumptions of this theorem, we need to check condition
1., while conditions 2. and 3. are usually already covered.

6.2 Buildings of type An

To show that the complex opposite the fundamental chamber in a spherical building of type An has
a cone function with bounded cone radius, we show that the class CA from Definition 5.6 satisfies
the assumptions of Theorem 6.1.

We will need some facts that appear in the proof of [Abr96, Proposition 12].

28



Fact 6.3. If TE (V ) ∈ CA, then there exists ℓ ∈ XE (V ) such that ℓ is a line, i.e., dim(ℓ) = 1.

Let ℓ ∈ XE(V ) be a line. Define

Y0 = {U ∈ TE(V ) : ℓ+ U ∈ TE(V )},

and further define κ0 to be the subcomplex of TE(V ) spanned by Y0.
Assume now that dimV = n + 2 and hence dimTE(V ) = n (and FlagX is a building of type

An+1). For 1 ≤ i ≤ n+ 1, define Yi ⊆ XE (V ) as follows:

Yi = {U ∈ XE(V ) | dim(U) ≥ n+ 2− i or U ∈ Y0}.

For every such i, let κi be the subcomplex of TE(V ) spanned by Yi.

Fact 6.4. We denote Y = XE(V ), κ = TE (V ) and for every U ∈ TE(V ) we denote the link of
U by lkκ(U). For every 1 ≤ i ≤ n + 1 and every U ∈ Yi \ Yi−1, it holds that lkκ(U) ∩ κi−1 =
TE ′(U) ∗ TE(V/U) such that

• The set E ′ is a set of subsets of U satisfying
∑n+1

j=1

(
n
j−1

)
e′j ≤ |K|, hence TE ′(U) ∈ CA.

• The set E is a set of subsets of V/U that satisfying
∑n+1

j=1

(
n
j−1

)
ej ≤ |K| and hence TE ′(V/U) ∈

CA.

Lemma 6.5. There is an (n− 1)-cone function Coneκ0 such that for every 0 ≤ k ≤ n− 1,

Radk(Coneκ0) ≤ n+ 2.

Proof. Let Γ0 be the subcomplex of κ0 spanned by Z0 = {U ∈ XE(V ) : ℓ ≤ U}. For 1 ≤ i ≤ n+ 1,
we denote

Zi = {U ∈ Y0 | dim(U) ≤ i or U ∈ Z0}.

Further denote Γi = FlagZi. Note that Γn+1 = κ0. We will show by induction that for every
0 ≤ i ≤ n + 1, there is an (n − 1)-cone function ConeΓi

such that for every −1 ≤ k ≤ n − 1,
Radk(ConeYi) ≤ i+ 1.

For i = 0, we note that Γ0 is the ball of radius 1 around ℓ in κ and can be written as Γ0 =
{ℓ} ∗ lkκ(ℓ). By Proposition 2.11, there is an (n − 1)-cone function ConeΓ0 such that for every
−1 ≤ k ≤ n− 1, Radk(ConeΓ0) ≤ 1.

Let 1 ≤ i ≤ n + 1 and assume there is an (n − 1)-cone function ConeΓi−1 such that for every
−1 ≤ k ≤ n− 1, Radk(ConeΓi−1) ≤ i. We will apply Theorem 3.2 in order to bound the cone radii
of Γi. We note that any two U1, U2 ∈ Yi \ Yi−1, U1 6= U2 are of the same dimension and thus are
not connected by an edge. Let U ∈ Zi \ Zi−1. We will show that lkκ0(U) ∩ Γi−1 is a join of the
vertex {U + ℓ} with the complex spanned by all the other vertices in lkκ0(U) ∩ Γi−1.

Note that lkκ0(U) ∩ Γi−1 is a clique complex, thus it is enough to show that for every vertex
U ′ in lkκ0(U) ∩ Γi−1 that is not ℓ + U , there is an edge connecting U ′ and ℓ+ U . Let U ′ be such
vertex.

First, we will deal with the case were dim(U ′) < i. In that case (using the fact that dim(U) = i),
U ′ being in lkκ0(U) implies that U ′ ≤ U and thus U ′ ≤ U + ℓ, i.e., U ′ is connected by an edge to
U + ℓ as needed.
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Second, assume that dim(U ′) > i. From the definition of Zi−1, it follows that U
′ ∈ Z0, i.e., that

ℓ ≤ U ′. Also, U ′ is in lkκ0(U) and thus U ≤ U ′. It follows that U + ℓ ≤ U ′, i.e., U ′ is connected by
an edge to U + ℓ as needed.

By Proposition 2.11, for every U ∈ Zi \Zi−1, there is an (n− 2)-cone function Conelkκ0 (U)∩Γi−1

such that for every −1 ≤ k ≤ n− 2, Radk(Conelkκ0(U)∩Γi−1
) ≤ 1.

By Theorem 3.2 (with R′′
k = 1 for every k), it follows that there is an (n − 1)-cone function

ConeΓi
such that for every −1 ≤ k ≤ n− 1, Radk(ConeΓi

) ≤ i+ 1 as needed.

Corollary 6.6. For every n ∈ N ∪ {0} there is a constant R(n) such that for every TE(V ) ∈ CA

with dimTE(V ) = n there in an (n− 1)-cone function ConeTE (V ) such that

Radk(ConeTE(V )) ≤ R(n),∀ − 1 ≤ k ≤ n− 1.

In particular, if ∆ is a building of type An over a field K with |K| ≥ 2n−1 and a ∈ ∆ a simplex,
then there exists an (n− 2)-cone function Cone∆0(a) of ∆

0(a) such that

Radj(Cone∆0(a)) ≤ R(n− 1),∀ − 1 ≤ j ≤ n− 2.

Proof. The result follows from Theorem 6.1 together with Lemma 6.5 and Fact 6.4. In the notation
of Theorem 6.1, we have f(n) = n+ 2 and ℓn = n+ 1.

6.3 Buildings of type Cn

The class C that will cover the case of opposition complexes in buildings of type Cn will be the
union of class CA (see Definition 5.6) and CC (see Definition 5.10).

Proposition 6.7. The class C satisfies the requirements of Theorem 6.1.

Corollary 6.8. Let ∆ = FlagX(V ) be a classical Cn building as described in Section 5.3.3 (note
that dim∆ = n− 1). Assume that K is infinite or K = Fq and

• q ≥ 22n−2 if f is alternating and Q = 0,

• q ≥ 24n−4 if m = 2n and σ 6= id,

• q ≥ 22n−1 if m = 2n+ 1 or 2n + 2.

In particular, if ∆ is the building coming from the BN-pair of a Chevalley group of type Bn or Cn
over the field Fq we require q ≥ 22n−1.

Then for any a ∈ ∆ there exists an (n− 2)-cone function Cone∆0(a) of ∆
0(a) with

Radj(Cone∆0(a)) ≤ R(n− 1), −1 ≤ j ≤ n− 2

where R(n− 1) is as in Theorem 6.1 with f(n) = 2n + 1 and ℓn = 2n+ 2.

The main part of the proof of Proposition 6.7 is covered by the following lemma.

Lemma 6.9. Let (TE (V ),FlagX) ∈ CC . Set n = dimFlagX ≥ 1. By [Abr96], there exists a
1-dimensional subspace ℓ ∈ XE (V ). Define X0 = {U ∈ X | U satisfies 1, 2 or 3} where

1. ℓ ≤ U and U ⋔ E;
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2. ℓ � U ≤ ℓ⊥ and U ⋔ E ∪ (E + ℓ);

3. U � ℓ⊥,dimU > 1 and U ⋔ E ∪ (E ∩ ℓ⊥) ∪ (E + ℓ) ∪ ((E ∩ ℓ⊥) + ℓ).

Then κ0 := FlagX0 has an (n− 1)-cone function Coneκ0 such that

Radj(Coneκ0) ≤ 2n+ 3 for all − 1 ≤ j ≤ n− 1.

Proof. Let (TE (V ),FlagX) ∈ CC as above. Thus dimFlagX = n and FlagX is of type Cn+1. In
particular, any totally isotropic subspace of V has dimension at most n+ 1.

We will apply Theorem 3.2 inductively to two different filtrations of κ0. The first one is defined
as follows.

Y0 = {U ∈ X satisfying 1.}

Yi = Yi−1 ∪ {U ∈ X | dimU = i, U satisfies 2.} = {U ∈ X | dimU ≤ i, U satisfies 2.} ∪ Y0

for 1 ≤ i ≤ n+ 1.

We set Γi = Flag Yi.
The second filtration is given by

Z0 = Yn+1

Zi = Zi−1 ∪ {U ∈ X | dimU = n+ 1− (i− 1), U satisfies 3.}

= Z0 ∪ {U ∈ X | dimU ≥ n+ 1− (i− 1), U satisfies 3.}

for 1 ≤ i ≤ n+ 1. We set ζi = FlagZi. We have that Γn+1 = ζ0 and ζn+1 = κ0.
Next, we want to show that for each Γi there exists an (n− 1)-cone function ConeΓi

such that
Radj(ConeΓi

) ≤ i+ 1 for all −1 ≤ j ≤ n− 1, 0 ≤ i ≤ n+ 1. We do this by induction on i.
For i = 0 we have Γ0 = stκ(ℓ) = {ℓ} ∗ lkκ(ℓ). Hence by Proposition 2.11 there exists a cone

function ConeΓ0 with Radj(ConeΓ0) ≤ 1 for all −1 ≤ j ≤ n− 1.
For the following step, fix 1 ≤ i ≤ n + 1. We want to apply Theorem 3.2 to the following

set-up. Here κ0 corresponds to the complex called X in Theorem 3.2, Γi−1 corresponds to X ′ , and
Yi \ Yi−1 =Wi. We check that the conditions of Theorem 3.2 are satisfied.

For condition 1. note that Wi ∩ Γi−1 = ∅ by definition. Condition 2. holds since all subspaces
in Wi have the same dimension, hence they are not connected in ∆ and thus not in κ.

For 3. and 4. let w ∈ Wi. Then lkκ0(w) = Flag {u ∈ κ0(0) | u < w or w > u}. Furthermore,
for u ∈ Yi−1 we have u + ℓ ∈ X0, since u ⋔ E + ℓ ⇐⇒ u + ℓ ⋔ E , see [Abr96]. Since ℓ ≤ w + ℓ,
we have w + ℓ ∈ Y0 ⊂ Yi−1. Next, we want to show that lkκ0(w) ∩ Γi−1 is a join of {w + ℓ}
with the flag complex of all other vertices from lkκ0(w) ∩ Γi−1. Since lkκ0(w) ∩ Γi−1 is a clique
complex, it suffices to check that every vertex different from w + ℓ is adjacent to w + ℓ. Let
u ∈ (lkκ0(w) ∩ Γi−1)(0) \ {w + ℓ}. Then we differentiate two cases:

• Case 1: dimu ≤ i− 1: then u ≤ w ≤ w + ℓ

• Case 2: dimu > i then u ∈ Y0, thus w ≤ u and ℓ ≤ u thus w + ℓ ≤ u.

Hence any other vertex is connected to w + ℓ by an edge and thus

Γ0 = {w + ℓ} ∗ Flag ((lkκ0(w) ∩ Γi−1)(0) \ {w + ℓ}) .

31



By Proposition 2.11 we have Radk(Conelkκ0 (w)∩Γi−1
) ≤ 1.

Thus we can apply Theorem 3.2 and get an n−1-done function ConeΓi
satisfying Radj(ConeΓi

) ≤
i+ 1.

We treat the second filtration similarly. We want to show that for every 0 ≤ i ≤ n+ 1 there is
an (n−1)-cone function Coneζi such that Radj(Coneζi) ≤ n+2+ i. We again proceed by induction
on i.

For i = 0 we have that ζ0 = Γn+1 has cone function with radius ≤ n+2 by the above reasoning.
Now fix 1 ≤ i ≤ n + 1. We want to use Theorem 3.2 with κ0 corresponding to X, ζi−1 to X ′,

and Zi \Zi−1 =W . Then conditions 1. and 2. of Theorem 3.2 are satisfied by the same argument
as above.

For conditions 3. and 4., fixw ∈W and consider lkκ0(w)∩ζi−1 = Flag {u ∈ Zi−1 | u < w or u > w}.
We show that every vertex (different from w ∩ ℓ⊥) is connected to w ∩ ℓ⊥ hence lkκ0(w) ∩ ζi−1 ={
w ∩ ℓ⊥

}
∗Flag

{
u ∈ Zi−1 \

{
w ∩ ℓ⊥

}
| u < w or u > w

}
. Thus by Proposition 2.11, lkκ0(w)∩ ζi−1

has a cone radius bounded by 1. Applying Theorem 3.2 we get a cone function Coneζi satisfying

Radk(Coneζi) ≤ Radk(Coneζi−1
) + 1 ≤ n+ 2 + i.

To show that every vertex (different from w ∩ ℓ⊥) is connected to w ∩ ℓ⊥, let u ∈ lkκ0(w) ∩
ζi−1(0) = {u ∈ Zi−1 | u < w or u > w}. If w ≤ u then w∩ ℓ⊥ ≤ u and thus {u,w ∩ ℓ⊥} ∈ lkκ0(w)∩
ζi−1. If u ≤ w, then dimu < dimw = n+ 1− i+ 1 hence u ∈ Z0. Therefore u satisfies either 1 or
2. But if it satisfies 1, then ℓ ≤ u ≤ w, a contradiction to w ∈ Zi \ Zi−1. Hence u satisfies 2, and
in particular u ≤ ℓ⊥. Thus u ≤ w ∩ ℓ⊥ and hence {u,w ∩ ℓ⊥} ∈ lkκ0(w) ∩ ζi−1.

Since κ0 = ζn+1 we get the desired result.

Proof of Proposition 6.7. We proof that every (κ,∆) ∈ C has a filtration satisfying the
assumptions of Theorem 6.1 by induction on n = dim∆.

Let n = 0. Hence ∆ will be a building of type A1 or C1. By [Abr96] there exists at least on
1-dimensional subspace ℓ ∈ XE (V ) and thus κ will be non-empty.

For the inductive step, fix n ≥ 1 and set f(n) = 2n+ 3. We distinguish between two cases:
If (κ,∆) ∈ CA, Section 6.2 gives the desired filtration with fA(n) = n+2 ≤ f(n) and length of

the filtration being n+ 1.
If (κ,∆) ∈ CC , we can use the notation as in Definition 5.10, e.g. (κ,∆) = (TE (V ),FlagX). As

in Lemma 6.9 we fix a 1-dimensional subspace ℓ ∈ XE(V ) and defineX0 = {U ∈ X | U satisfies 1, 2 or 3}
(where 1,2,3 are as in the lemma) and κ0 = FlagX0. Hence, by Lemma 6.9, there exists an (n−1)-
cone function Coneκ0 such that

Radj(Coneκ0) ≤ 2n+ 3 = f(n) for all − 1 ≤ j ≤ n− 1.

Next, we define the desired filtration in two steps. Set Z = {U ∈ XE (V ) | ℓ ≤ U or U ⋔ E + ℓ}
and Y0 = X0. Note that Y0 ⊆ Z. For the first half of the filtration we define

Yi = {U ∈ Z | U ∈ Y0 or dimU ≤ i}, κi = Flag Yi, 1 ≤ i ≤ n+ 1.

For the second half we set

Yi = {U ∈ XE(V ) | U ∈ Z or dimU ≥ 2n + 3− i}, κi = Flag Yi, n ≤ i ≤ 2n+ 2.

Then κ2n+2 = κ and [Abr96, Propostition 13] shows that the filtration satisfies assumptions 2 and
3.
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6.4 Buildings of type Dn

The proof that opposition complexes of buildings of type Dn are coboundary expanders is the most
involved case. We use the notation introduced in Section 5.3.4.

The following proposition can be seen as a quantitative version of [Abr96, Corollary 17 (ii)].

Proposition 6.10. Let τ = {E1 < · · · < Er} ∈ ∆̃ and set E(τ) = {Ei, E
⊥
i | 1 ≤ i ≤ r}. If TE(τ)(V )

has an (n − 1)-cone function ConeTE(τ)(V ) with Rad(ConeTE(τ)(V )) ≤ c for some c ≥ 0 then there

exists an (n− 1)-cone function ConeT̃E(τ)(V ) with Rad(ConeT̃E(τ)(V )) ≤ 2c.

Proof. For shorter notation, we write T = TE(τ)(V ), Y = XE(τ)(V ) and T̃ = T̃E(τ)(V ), Ỹ =

X̃E(τ)(V ).

The idea of the proof is to construct an (n− 1)-cone function for T̃ given a cone function

ConeT : ⊕n−1
j=−1Cj(T ) → ⊕n

j=0Cj(T )

by defining maps fj : Cj(T̃ ) → Cj(T ) for −1 ≤ j ≤ n − 1 and gj : Cj(T ) → Cj(T̃ ) for 0 ≤ j ≤ n
such that gj+1 ◦ ConeT |Cj(T )◦fj gives rise to a cone function of T̃ .

As already observed in [Abr96], T is a subdivision of T̃ in the following way. Note that Ỹ ⊂ Y
and Y \ Ỹ = {U ∈ Y | dimU = n − 1}. If two subspaces U,W ∈ Ỹ are connected by an edge
in T then the same is true in T̃ , but we have additional edges in T̃ , namely in the case when
dimU = dimW = n and dim(U ∩W ) = n− 1. To go from T̃ to T , we subdivide the edge {U,W}
by adding the vertex U∩W and connecting U,W and every vertex U ′ ∈ Ỹ for which {U ′, U,W} ∈ T̃
to U ∩W .

Recall from the discussion above that there are two different types of n-dimensional spaces in X̃
and that spaces from the same type cannot have an intersection of dimension n− 1. Furthermore,
each U ∈ X of dimension n− 1 is contained in exactly two totally isotropic spaces of dimension n.
If U ∈ Y of dimension n − 1, i.e. U ⋔̃E , with W1,W2 ∈ X of dimension n such that U = W1 ∩W2

then by [Abr96, Lemma 31 (iii)] we have that Wi⋔̃E and hence W1,W2 ∈ Y .
In particular, any simplex in T̃ contains at most two vertices which are spaces of dimension n.
For each U ∈ Y \ Ỹ pick one of the two n-dimensional subspaces containing it and denote it

by WU . Note that if W ∈ Y is connected to U by an edge in T , i.e. W ⊆ U or U ⊆ W then
{WU ,W} ∈ T (1) if and only if W 6=WU .

We define the following two subsets of T (j) for 0 ≤ j ≤ n:

Ij = {σ ∈ T (j) | ∃U ∈ σ(0) : dimU = n−1}, Jj = {σ ∈ T (j) | ∃U ∈ σ(0) : dimU = n−1 and WU /∈ σ(0)}.

Let σ ∈ Jj then we define σ〈U,WU 〉 ∈
−−→
T (j) to be the oriented simplex with vertex WU at the

position of U instead of U . This is well defined by the above observation. Similarly, if σ ∈
−→
T̃ with

W1,W2 ∈ σ(0),dimW1 = dimW2 = n and U = W1 ∩W2 has dimension n − 1, we write σ〈Wi, U〉

for the oriented simplex where we replaced Wi with U . This is now a well-defined simplex in
−−→
T (j).

Next, we define the function fj : Cj(T̃ ) → Cj(T ), 0 ≤ j ≤ n − 1 by its action on chains of the
form 1σ and then extending Z-linearly:

fj(1σ) =




1σ if σ ∈

−−→
T (j) ∩

−−→
T̃ (j)

1σ〈W1,U〉 + 1σ〈W2,U〉 if σ ∈
−−→
T̃ (j) \

−−→
T (j),W1,W2 ∈ σ(0),dimWi = n,U =W1 ∩W2,dimU = n− 1.
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On the other hand, we define

gj : Cj(T ) → Cj(T̃ )

1σ 7→





1σ if σ ∈
−−→
T (j) ∩

−−→
T̃ (j)

1σ〈U,WU 〉 if σ ∈ Jj

0 if σ ∈ Ij \ Jj .

We define Conej
T̃

= gj+1 ◦ ConejT ◦fj,−1 ≤ j ≤ n − 1, where ConejT := ConeT |Cj(T ) and

ConeT̃ = ⊕n−1
j=−1Cone

j

T̃
. The majority of the rest of the proof is dedicated to showing that this is

indeed a cone function. As concatenation of Z-linear functions it is Z-linear. If [U ] is the appex of
ConeT then the appex of ConeT̃ is again [U ] if dimU 6= n− 1 and otherwise it is [WU ].

Hence, we are left with showing the cone equation. Let σ ∈
−−→
T (j). We write ConeT (1σ) =∑

τ∈−−−−→T (j+1)
λτ1τ for λτ ∈ Z. In the following, if τ ∈ Ij+1 is a simplex, then U will always denote

the subspace of dimension n − 1 in τ(0). Additionally, [σ : τ ] will denote the oriented incidence
number, which is 0 if τ 6⊆ σ and 1 or −1 if τ ⊂ σ depending on the position of the vertex

of σ that was removed to obtain τ . It is chosen in such a way that for σ ∈
−−−−−→
T (j + 1) we have

∂j+11σ =
∑

τ∈−−→T (j)
[σ : τ ]1τ . Then

∂j+1(gj+1(ConeT (1σ))) = ∂j+1(ConeT (1σ))−
∑

τ∈Ij+1

λτ∂j+11τ +
∑

τ∈Jj+1

λτ∂j+11τ〈U,WU 〉

= 1σ − ConeT (∂j1σ)−
∑

τ∈Ij+1

λτ
∑

γ∈−−→T (j)

[τ : γ]1γ

+
∑

τ∈Jj+1

λτ [τ : τ \ {U}]1τ\{U} +
∑

τ∈Jj+1

λτ
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ〈U,WU 〉

where we used that

∂j+11τ〈U,WU 〉 =
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ〈U,WU 〉 + [τ : τ \ {U}]1τ\{U}.

Note that (τ〈U,WU 〉) \ {WU} = τ \ {U} and [τ : γ〈U,WU 〉] = [τ : γ].
We take a closer look at the second half of that expression:

−
∑

τ∈Ij+1

λτ
∑

γ∈−−→T (j)

[τ : γ]1γ +
∑

τ∈Jj+1

λτ [τ : τ \ {U}]1τ\{U} +
∑

τ∈Jj+1

λτ
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ〈U,WU 〉

=−
∑

τ∈Ij+1

λτ
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ +
∑

τ∈Jj+1

λτ
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ〈U,WU 〉

−
∑

τ∈Ij+1

λτ [τ : τ \ {U}]1τ\{U} +
∑

τ∈Jj+1

λτ [τ : τ \ {U}]1τ\{U}

=−
∑

τ∈Ij+1

λτ
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ +
∑

τ∈Jj+1

λτ
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ〈U,WU 〉

−
∑

τ∈Ij+1\Jj+1

λτ [τ : τ \ {U}]1τ\{U}
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On the other hand, let λ̃γ ∈ Z such that ConeT (∂1σ) =
∑

γ∈−−→T (j)
λ̃γ1γ . Then

gj(ConeT (∂1σ)) = ConeT (∂1σ)−
∑

γ∈Ij
λ̃γ1γ +

∑

γ∈Jj
λ̃γ1γ〈U,WU 〉.

What are the λ̃γ in terms of the λτ?

ConeT (∂1σ) = 1σ − ∂j+1ConeT (1σ) = 1σ − ∂j+1

∑

τ∈−−−−→T (j+1)

λτ1τ

= 1σ −
∑

τ∈−−−−→T (j+1)

λτ
∑

γ∈−−→T (j)

[τ : γ]1γ

= 1σ −
∑

γ∈−−→T (j)




∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ .

Hence if γ 6= σ then

λ̃γ = −
∑

τ∈−−−−→T (j+1)

λτ [τ : γ]

and otherwise
λ̃σ = 1−

∑

τ∈−−−−→T (j+1)

λτ [τ : σ].

To compare the expression of gj(ConeT (∂j1σ)) with ∂j+1(gj+1(ConeT (1σ))) we furthermore need
the following observation comparing the sets Ij with Ij+1 and Jj with Jj+1.

{
(τ, γ) : γ ∈ Ij, τ ∈

−−−−−→
T (j + 1), γ ⊂ τ

}
=

{
(τ, γ) : τ ∈ Ij+1, γ ∈

−−→
T (j), γ ⊂ τ, γ 6= τ \ {U}

}

and
{
(τ, γ) : γ ∈ Jj , τ ∈

−−−−−→
T (j + 1), γ ⊂ τ

}

=
{
(τ, γ) : τ ∈ Jj+1, γ ∈

−−→
T (j), γ ⊂ τ, γ 6= τ \ {U}

}
∪ {(τ, γ) : τ ∈ Ij+1 \ Jj+1, γ = τ \ {WU}} .

We use the above result to further investigate the second half of the expression for gj(ConeT (∂1σ)).
We first assume that σ /∈ Ij.

−
∑

γ∈Ij
λ̃γ1γ +

∑

γ∈Jj
λ̃γ1γ〈U,WU 〉 = −

∑

γ∈Ij


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ +

∑

γ∈Jj


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ〈U,WU 〉

=
∑

τ∈Ij+1

∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]λτ1γ −
∑

τ∈Jj+1

∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]λτ1γ〈U,WU 〉

−
∑

τ∈Ij+1\Jj+1

[τ : τ \ {WU}]λτ1(τ\{WU})〈U,WU 〉.

35



As second case, assume σ ∈ Ij \ Jj .

gj(ConeT (∂1σ)) = ConeT (∂1σ)−
∑

γ∈Ij\{σ}
λ̃γ1γ +

∑

γ∈Jj
λ̃γ1γ〈U,WU 〉 − λ̃σ1σ

= ConeT (∂1σ)−
∑

γ∈Ij\{σ}


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ +

∑

γ∈Jj


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ〈U,WU 〉

−


1−

∑

τ∈−−−−→T (j+1)

λτ [τ : σ]


1σ

= ConeT (∂1σ)−
∑

γ∈Ij


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ +

∑

γ∈Jj


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ〈U,WU 〉 − 1σ

As third and last case, we consider σ ∈ Jj ⊂ Ij .

gj(ConeT (∂1σ)) = ConeT (∂1σ)−
∑

γ∈Ij\{σ}
λ̃γ1γ +

∑

γ∈Jj\{σ}
λ̃γ1γ〈U,WU 〉 − λ̃σ1σ + λ̃σ1σ〈U,WU 〉

= ConeT (∂1σ)−
∑

γ∈Ij\{σ}


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ +

∑

γ∈Jj\{σ}


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ〈U,WU 〉

−


1−

∑

τ∈−−−−→T (j+1)

λτ [τ : σ]


1σ +


1−

∑

τ∈−−−−→T (j+1)

λτ [τ : σ]


1σ〈U,WU 〉

= ConeT (∂1σ)−
∑

γ∈Ij


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ +

∑

γ∈Jj


−

∑

τ∈−−−−→T (j+1)

λτ [τ : γ]


1γ〈U,WU 〉 − 1σ + 1σ〈U,WU 〉

We now look at almost the complete cone equation for ConeT̃ , still not considering fj. Let

σ ∈
−−→
T (j) ∩

−−→
T̃ (j), then we get

∂j+1gj+1(ConeT (1σ) + gj+1(ConeT (∂j1σ)) = 1σ−ConeT (∂j1σ)

−
∑

τ∈Ij+1

λτ
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ+
∑

τ∈Jj+1

λτ
∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]1γ〈U,WU 〉

−
∑

τ∈Ij+1\Jj+1

λτ [τ : τ \ {U}]1τ\{U}

+ConeT (∂1σ)+
∑

τ∈Ij+1

∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]λτ1γ−
∑

τ∈Jj+1

∑

γ∈−−→T (j):γ 6=τ\{U}

[τ : γ]λτ1γ〈U,WU 〉

−
∑

τ∈Ij+1\Jj+1

[τ : τ \ {WU}]λτ1(τ\{WU})〈U,WU 〉.
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The orange, teal and blue parts cancel each other out. It remains to show that the same is true for
the purple parts. Note that the sums in the two purple parts run over the same elements. Hence
we need to show that for any τ ∈ Ij+1 \ Jj+1 we have

[τ : τ \ {U}]1τ\{U} = −[τ : τ \ {WU}]1(τ\{WU})〈U,WU 〉

Note that as unoriented simplices τ \{U} is the same as (τ \{WU})〈U,WU 〉 (in both cases we have
all the vertices of τ except U). Let τ = [U0, . . . , Uj+1] and assume that U = Uℓ and WU = Uk
for some 0 ≤ ℓ, k ≤ j + 1. Then [τ : τ \ {U}] = (−1)ℓ and [τ : τ \ {WU}] = (−1)k. Further note
that we can obtain(τ \ {WU})〈U,WU 〉 from τ \ {U} by cyclically permuting the vertices of index
between min{ℓ, k} and max{ℓ, k}−1. The cycle has length |k−ℓ|−1 and thus signature (−1)k−ℓ−1.
Hence (−1)k1(τ\{WU})〈U,WU 〉 = (−1)k · (−1)k−ℓ−1

1τ\{U} = −(−1)ℓ1τ\{U} which is what we wanted
to show.

To summarize, we get

∂j+1gj+1(ConeT (1σ) + gj+1(ConeT (∂j1σ)) = 1σ.

Analogously, we get for σ ∈ Ij \ Jj

∂j+1gj+1(ConeT (1σ) + gj+1(ConeT (∂j1σ)) = 0

and for σ ∈ Jj
∂j+1gj+1(ConeT (1σ) + gj+1(ConeT (∂j1σ)) = 1σ〈U,WU 〉.

Note that if σ ∈
−−→
T (j) ∩

−−→
T̃ (j), then fj(1σ) = 1σ which shows that the cone equation holds

in this case. To conclude the proof, we need to check to cone equation also for the case where

σ ∈
−−→
T̃ (j) \

−−→
T (j). In this case σ(0) contains two subspaces W1,W2 with dimWi = n and U :=

W1 ∩ W2 has dimension n − 1. Without loss of generality, assume that WU = W1. We get
fj(1σ) = 1σ〈W1,U〉 + 1σ〈W2,U〉. We have that σ〈W1, U〉 ∈ Jj and σ〈W2, U〉 ∈ Ij \ Jj thus we can
apply the above reasoning to both of them separately and get, using linearity:

∂j+1gj+1(ConeT (fj(1σ)) + gj+1(ConeT (fj(∂j1σ)))

= ∂j+1gj+1(ConeT (1σ〈W1,U〉)) + gj+1(ConeT (∂j1σ〈W1,U〉)))

+ ∂j+1gj+1(ConeT (1σ〈W2,U〉)) + gj+1(ConeT (∂j1σ〈W2,U〉)))

= 1(σ〈W1,U〉)〈U,WU 〉 + 0 = 1σ.

For the last equality, we used that (σ〈W1, U〉)〈U,WU 〉 = σ since we first replace W1 in σ by U and
by applying 〈U,WU 〉 we replace U by WU =W1 and end up where we started.

For bounding the cone radius of ConeT̃ note that fj at most doubles the size of support of a
chain, while applying gj will not increase the size of the support of a chain. Hence in the worst
case, i.e. if σ ∈ Ij then

|supp(ConeT̃ (1σ))| ≤ |supp(ConeT (1σ〈W1,U〉))|+ |supp(ConeT̃ (1σ〈W2,U〉))| ≤ 2Radj ConeT ≤ 2c.

Hence we get the desired bound on the cone radius.

For the Dn case, we need the following weaker and more specialized version of Theorem 6.1. In
order to state it, we need the following definition.
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Definition 6.11. Let K be a field, V a K-vector space, Y a collection of subspaces of V . Let
X = Flag Y and U ∈ Y . Then we define

Y <U := {W ∈ Y |W < U}, X<U := Flag Y <U

Y >U := {W ∈ Y |W > U}, X>U := Flag Y >U .

Remark 6.12. Note that
lkX(U) = X<U ∗X>U .

Theorem 6.13. Let C be a class of tuples (κ, (V,Q, f)) where (V,Q, f) is a thick pseudo-quadratic
space and κ = Flag Y where Y 6= ∅ is set of vector subspaces of V . Let n = dimκ, assume there
exists ℓn ∈ N and a filtration κ0 ⊂ κ1 ⊂ . . . ⊂ κℓ = κ, ℓ ≤ ℓn satisfying:

1. There exists an (n− 1)-cone function Coneκ0 such that

Radj(Coneκ0) ≤ f(n),−1 ≤ j ≤ n− 1

where f : R → R is a function depending only on C.

2. Every κi is a full subcomplex of κ, i.e. κi = Flag Yi for some Yi ⊆ Y and all vector subspaces
in Yi \ Yi−1 have the same dimension.

3. For every U ∈ Yi\Yi−1 we have that lkκi(U)∩κi−1 = κ<Ui−1∗κ
>U
i−1 is such that κ<Ui−1, κ

>U
i−1 ∈ C or

one (or both) have again a filtration R0 ⊂ . . . Rh, h ≤ ℓi−1 which starts with an element of C
(i.e. R0 ∈ C), such that condition 2. is satisfied and such that for every W ∈ Rj(0)\Rj−1(0)
we have R<Wj−1 , R

>W
j−1 ∈ C.

Then there exist constants R(n) depending only on C and n, and an (n− 1)-cone function Coneκ
such that

Radj(Coneκ) ≤ R(n),−1 ≤ j ≤ n− 1.

Proof. The proof is analogues to the one of Theorem 6.1. The main difference is that to get a cone
function for lkκi(U) ∩ κi−1 it might happen that we cannot just use the induction hypothesis, but
that we need to do another induction on the filtration of κ<Ui−1 or κ>Ui−1, using Theorem 3.2 in the
step of the induction. This gives an even weaker and more complicated bound on the cone radius
of the final cone function, thus we decided to not keep track of it. But it will still only depend on
n and the class C, not on the field K.

We now describe the set up for the rest of this section. We follow [Abr96, Section 7] closely and
also refer to that book for more details. We will define three subclasses C1,C2,C3 and first show
that C1,C2 satisfy the assumptions of Theorem 6.13 to then conclude that CD = C1 ∪C2 ∪C3

satisfies them as well.
We fix n to be the Witt index of (V,Q, f) hence dimV = 2n and we are dealing with a Dn

building, which is n− 1-dimensional. Recall X = {0 < U < V | U totally isotropic}.

Definition 6.14. [Abr96, Definition 12] Let U,E < V , dimU < n,dimE = n. Assume that E is
not totally isotropic. Then

U@E : ⇐⇒ U⊥ ∩ E is not totally isotropic.
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Set

Un = Un(V ) = {A < V | dimA = n,A /∈ X}

M(A) = {M < A | dimM = n− 1,M ∈ X} for any A ∈ Un.

Definition 6.15. We define the class C1 to consist of complexes FlagXE;F (U ;V ) where

• (V,Q, f) is thick pseudo-quadratic space of Witt index n, in particular dimV = 2n;

• U ∈ X with dimU = k ≥ 2;

• E a finite set of subspaces of U , set ej = |Ej |, 1 ≤ j ≤ k − 1 like before;

• Let F = F1 ⊃ F2 ⊃ . . . ⊃ Fk−1 be finite subsets of Un(V ) satisfying

1. U ∩ F ∈ E ∪ {0} for all F ∈ F ;

2. F⊥
j = Fj ;

3. dim(U ∩ F ) ≤ k − 1− j for all F ∈ Fj , 1 ≤ j ≤ k − 1.

• Assume that |K| ≥
∑k−1

j=1

(
k−2
j−1

)
ej + 2k−1s, where s = |F|.

Set
XE;F (U ;V ) := {0 < W < U | W ⋔U E and W@VFj for dimW = j}.

Lemma 6.16. Let κ = FlagXE;F (U ;V ) ∈ C1 with k = dimU ≥ 2, in particular κ has dimension
k − 2. Then there exists a 1-dimensional subspace ℓ ∈ XE;F (U ;V ). We set Y = XE;F (U ;V ) and
define

Y0 := {A ∈ Y | A+ ℓ ∈ Y }.

Then κ0 = Flag Y0 has a k − 3 cone function Coneκ0 with

Radj(Coneκ0) ≤ k, −1 ≤ j ≤ k − 3.

Proof. We proceed similar to the proof of Lemma 6.5. Set B0 := {A ∈ Y | ℓ ≤ A}, β0 = FlagB0.
Then β0 = {ℓ} ∗ lkY ({ℓ}) and hence it has a k − 3- cone function with cone radius bounded by 1.
Next, set Bi = {A ∈ Y0 | ℓ ≤ A or dimA ≤ i}, βi = FlagBi for 1 ≤ i ≤ k − 1. Then all subspaces
in Bi \Bi−1 have dimension i. Let A ∈ Bi \Bi−1. Then lkβi(A)∩βi−1 = {A+ ℓ}∗Flag{W ∈ Bi−1 |
B 6= A + ℓ,A < W or W < A} by the same argument as in Lemma 6.5. Applying Theorem 3.2
inductively, we get a (k − 3)-cone function Coneβk−1

= Coneκ0 with

Radj(Coneκ0) ≤ k, −1 ≤ j ≤ k − 3.

Lemma 6.17. The class C1 satisfies the assumptions of Theorem 6.13. In particular, any complex
in C1 of dimension k − 2 has a (k − 3)-cone function with cone radius bounded depending only on
k.

The proof of this lemma follows closely the steps and arguments in the proof of [Abr96, Lemma
33], adapting it to our setting where necessary.
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Proof. Note that for any κ = FlagXE;F (U ;V ) ∈ C1 by [Abr96, Lemma 33, 1.] there exists a
1-dimensional subspace ℓ ∈ XE;F (U ;V ) =: Y . In particular, if κ is 0-dimensional, it is not empty.
We will proceed to prove the existence of a desired filtration. Let k = dimU = dimκ + 2. For
k = 2, this follows since κ 6= ∅ and we can thus define a (−1)-cone function for κ with cone radius
1. In particular, ℓ0 = 0. For k ≥ 3, let κ ∈ C1 with dimκ ≥ 1. Fix a 1-dimensional subspace ℓ ∈ Y
and set Y0 := {A ∈ Y | A + ℓ ∈ Y }, κ0 = Flag Y0. By Lemma 6.16, there exists a (k − 3)-cone
function Coneκ0 such that

Radj(Coneκ0) ≤ k =: f(k),−1 ≤ j ≤ k − 3.

The filtration that we will use consists of two dimension decreasing filtrations. First we define

Z := {W ∈ Y | ℓ ≤W or W ⋔U (F ∩ U) + ℓ} ⊇ Y0

Yi := {W ∈ Z |W ∈ Y0 or dimW ≥ k − i},

κi := Flag Yi, 1 ≤ i ≤ k − 1.

This satisfies assumption 2. in Theorem 6.13.
Let W ∈ Yi \ Yi−1. Then Y <W

i−1 = Y <W
0 by looking at the dimension. Step 3 in the proof

of [Abr96, Lemma 33] shows that Y <W
0 = XE ′;F ′(W ;V ) for some E ′,F ′. Thus κ<Wi−1 ∈ C1. On

the other hand, Y >W
i−1 = Z>W . Step 5 in [Abr96, Lemma 33] shows that while FlagZ>W is not

necessary in C1 it admits itself a filtration of length i satisfying the necessary properties.
The second part of the filtration of κ is defined as follows:

Zi := {W ∈ Y | W ∈ Z or dimW ≥ k − 1},

κn+i := FlagZi, 0 ≤ i ≤ k − 1.

This part of the filtration clearly satisfies assumption 2. again. Let W ∈ Zi \ Zi−1. Then Z>Wi−1 =

Y >W and Flag Y >W ∈ C1 by Step 4 in [Abr96, Lemma 33]. On the other hand, Z<Wi−1 = Z<W for
which we again have FlagZ<W ∈ C1 by [Abr96].

Definition 6.18. We define the class C2 to consist of complexes FlagZE;F (U ;V ) where

• (V,Q, f) is a thick pseudo-quadratic space of Witt index n, in particular dimV = 2n;

• U ∈ X with dimU = k ≥ 2;

• E a finite set of subspaces of U , set ej = |Ej |, 1 ≤ j ≤ k − 1 like before;

• F ⊂ Un(V ) with |F| = s <∞ such that

1. U ∩ F ⊆ E ∪ {0},

2. U ∩ F⊥ = 0 and dim(U ∩ F ) ≤ 1 for all F ∈ F .

• Assume |K| ≥
∑k−1

j=1

(k−2
j−1

)
ej + 2s.

• Set
ZE;F (U ;V ) := {0 < W < U |W ⋔U E and W@VF}.
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Lemma 6.19. Let κ = FlagZE;F (U ;V ) ∈ C2, dimU = k ≥ 2, in particular dimκ = k − 2. Set
Y = ZE;F (U ;V ). Then there exists H < U with dimH = k − 1 and H ∈ Y . We define

Y0 := {B ∈ Y | B ∩H ∈ Y }.

Then κ0 = Flag Y0 has a (k − 3)-cone function Coneκ0 with

Radj(ConeX0) ≤ k, −1 ≤ j ≤ k − 3.

Proof. The proof is similar to the proofs of Lemma 6.5 and Lemma 6.16, the difference being that
we now look at the dual version, where we fix a hyperplane instead of a line.

Set B0 = {A ∈ Y | A ≤ H}, β0 = FlagB0. Then β0 = {H} ∗ lkY0({H}) hence it has a
(k − 3)-cone function with cone radius bounded by 1.

Next, set Bi = {A ∈ Y0 | A ≤ H or dimA ≥ k − i}, βi = FlagBi for 1 ≤ i ≤ k − 1. Then
the subspaces in Bi \ Bi−1 are all of dimension k − i. Let A ∈ Bi \ Bi−1, then lkβi(A) ∩ βi−1 =
{A ∩ H} ∗ Flag{W ∈ Bi−1 | W 6= A ∩ H,W < A or A < W}. Hence it has an (k − 4)-cone
function with cone radius bounded by 1. Thus we can apply Theorem 3.2 inductively and obtain
a (k − 3)-cone function ConeBk−1

= Coneκ0 with

Radj(Coneκ0) ≤ k, −1 ≤ j ≤ k − 3.

Lemma 6.20. The class C2 satisfies the assumptions of Theorem 6.13. In particular, any complex
in C2 of dimension k − 2 has a (k − 3)-cone function with cone radius bounded depending only on
k.

The proof of this lemma follows closely the steps and arguments in the proof of [Abr96, Lemma
34], adapting it to our setting where necessary.

Proof. Let κ = FlagZE;F (U ;V ) ∈ C2. Then by [Abr96, Step (3), Lemma 34] there exists H < U
such that dimH = dimU − 1 = k − 1 and H ∈ ZE;F (U ;V ) =: Y . In particular, κ 6= ∅. We proof
the existence of a desired filtration by induction on k. For k = 2 we have that dimκ = 0 hence the
desired filtration and cone function exist trivially. Fix k ≥ 3 and assume dimκ = k− 2. We set κ0
as in Lemma 6.19:

Y0 := {B ∈ Y | B ∩H ∈ Y }, κ0 = Flag Y0.

Thus Lemma 6.19 shows the existence of the desired cone function for κ0 with f(n) = n. We define
the filtration in the following way.

Yi := {W ∈ Y |W ∈ Y0 or dimW ≤ i},

κi := Flag Yi, 1 ≤ i ≤ k − 1.

This clearly satisfies assumption 2. of Theorem 6.13. To see that it satisfies assumption 3., let
W ∈ Yi \ Yi−1. Then Y <W

i−1 = Y <W = {0 < A < W | A ⋔W E ∩W} = ZE∩W ;∅(W ;V ) and hence

Flag Y <W ∈ C2. On the other hand, Y >W
i−1 = Y >W

0 can again be described in such a way that

Flag Y >W
0 ∈ C2, see Step (5) in [Abr96, Lemma 34]. Since κk−1 = κ, the filtration is indeed as

desired.
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Next, we will define a third class, which will be the one containing the relevant opposition
complexes, see also Remark 6.24.

Definition 6.21. We define the class C3 to consist of complexes of the form Flag YE(V ) where

• (V,Q, f) is a thick pseudo-quadratic space of Witt index n, in particular dimV = 2n;

• E = E⊥ is a finite set of subspaces of V , set Ej = {E ∈ E : dimE = j}, ej = |Ej |;

• |K| ≥ 2
∑2n−1

j=1

(2n−2
j−1

)
ej ;

• Ên := En ∩ Un(V );

• X = {0 < U < V | U is totally isotropic}.

Set
YE(V ) := {U ∈ X | U ⋔̃E and if dimU < n then U@Ên}.

Lemma 6.22. Let κ = Flag YE(V ) ∈ C3 with dimV = 2n. Then there exists a 1-dimensional
subspace ℓ ∈ Y = YE(V ). Set

F := E ∪
(
E ∩ ℓ⊥

)
∪ (E + ℓ) ∪

((
E ∩ ℓ⊥

)
+ ℓ

)
and

F̂n := Fn ∩ Un(V ).

Consider the following conditions

1. ℓ ≤ U,U ⋔̃E and if dimU < n then U@Ên;

2. ℓ 6≤ U ≤ ℓ⊥ and

{
U ⋔ E , U@Ên if dimU = n− 1,

U ⋔ E ∪ (E + ℓ), U@F̂n if dimU ≤ n− 2;

3. U 6≤ ℓ⊥,dimU > 1, U ⋔̃F and if dimU < n then U@F̂n.

We define Y0 := {U ∈ X | U satisfies 1.,2., or 3. }. Then κ0 = Flag Y0 has an (n − 2)-cone
function Coneκ0 with

Radj(Coneκ0) ≤ 2n+ 1, −1 ≤ j ≤ n− 2.

Proof. Let κ = Flag YE(V ) ∈ C3 with dimV = 2n. By Step 1. [Abr96, Proposition 14] there exists
a 1-dimensional subspace ℓ ∈ Y0. Let Y0 be defined as above. Recall that X = {0 < U < V |
U is totally isotropic subspace}. We define a filtration for Y0 and we want to apply Theorem 3.2
inductively. We will use the fact stated in Step 3 of [Abr96, Proposition 14], that for every U ∈ Y0,
we have that U ∩ ℓ⊥ ∈ Y0 and (U ∩ ℓ⊥) + ℓ ∈ Y0.

Set

A0 := {U ∈ X | U satisfies 1.}

Ai := {U ∈ X | U satisfies 1. or (dimU ≤ i and U satisfies 2.)}, 1 ≤ i ≤ n;

αi := FlagAi, 0 ≤ i ≤ n.
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Then A0 = {ℓ} ∗ Flag{U ∈ A0 | U 6= ℓ} and hence has a cone function with cone radius bounded
by 1. Clearly elements in Ai \ Ai−1 have the same dimension an are hence not adjacent. Let
U ∈ Ai \Ai−1. Then

lkαi
(U) ∩ αi−1 = Flag{W ∈ X | (W ∈ A0 and U < W ) or (W ∈ Ai−1 and W < U)}.

We want to show that each subspace in {W ∈ X | (W ∈ A0 and U < W ) or (W ∈ Ai−1 and W <
U)} is either contained in or contains U + ℓ (note that we have U ∩ ℓ⊥+ ℓ = U + ℓ ∈ A0 ⊆ Ai−1). If
W ∈ A0 and U < W then ℓ ≤W and hence U + ℓ ≤W . If W ∈ Ai−1 and W < U then W < U + ℓ
as needed. The second part of the filtration is defined as follows. We set

Bi := {U ∈ X | U ∈ An or (U satisfies 3. and dimU ≥ n− i+ 1},

βi := FlagBi, 0 ≤ i ≤ n.

Then An = B0. Let U ∈ Bi \Bi−1. We want to show that lkβi(U)∩ βi−1 can be written as the join
of {U ∩ ℓ⊥} and Flag{W ∈ Bi−1 | W 6= U ∩ ℓ⊥,W < U or U < W}. First, note that U ∩ ℓ⊥ ∈ Y0
and hence U ∩ ℓ⊥ ∈ An ⊆ Bi−1. Let W ∈ Bi−1 \ {U ∩ ℓ⊥}. If W < U then dimW < n− i, hence
W ∈ An\A0, in particularW ≤ ℓ⊥. HenceW =W ∩ℓ⊥ ≤ U∩ℓ⊥. If U < W then U∩ℓ⊥ ≤ U ≤W .
Thus we get a filtration of κ0 of length 2n. By applying Theorem 3.2 at each step, we get an n− 2
cone function Coneκ0 with

Radj(Coneκ0) ≤ 2n+ 1,−1 ≤ j ≤ n− 2.

We now have all the necessary ingredients to show that the relevant class of simplicial complexes
satisfies the conditions of Theorem 6.13. The prove will be similar to the previous proofs of similar
results.

Theorem 6.23. The class CD = C1 ∪C2 ∪C3 satisfies the conditions of Theorem 6.13.

Proof. Let κ = Flag Y ∈ CD. If κ ∈ C1 ∪ C2 then the result follows from Lemma 6.17 and
Lemma 6.20.

Now assume κ = Flag YE(V ) ∈ C3. In this case the proof follows closely the proof of [Abr96,
Proposition 14]. First of all, notice that we again have a 1-dimensional subspace ℓ ∈ YE(V ) =: Y
(see Step 1 [Abr96, Proposition 14]). Let n = 1

2 dimV = dimκ + 1. We will again prove the
existence of a filtration by induction on n, but this time starting with n = 2.

Let n = 2, hence dimκ = 1. Step 2. in [Abr96, Proposition 14] shows that each vertex U ∈ Y
can be connected to ℓ by a path of length at most 5. Thus we define a 0-cone function of κ as
follows:

Coneκ(∅) = 1ℓ

Coneκ(1[U ]) =

k∑

i=0

1[Ui,Ui+1],

where U = U0, . . . , Uk = ℓ is the path from U to ℓ for U ∈ Y \ {ℓ}. In particular, k ≤ 4. By
Example 2.5, this is indeed a cone function. We can read off the cone radius from the explicit
description and get

Rad−1(Coneκ) = 1,Rad0(Coneκ) ≤ 5.
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Now assume n ≥ 3. We define κ0 = Flag Y0 as in Lemma 6.22. In particular, we know that there
exists an (n− 2)-cone function Coneκ0 with Radj(Coneκ0) ≤ 2n+1 = f(n) for all −1 ≤ j ≤ n− 2.

The filtration will contain two parts, one dimension increasing and one dimension decreasing
filtration. To define the first, we define what we call condition 4. in the following way, using the
notation from Lemma 6.22.

U 6≤ ℓ⊥ and





U ⋔̃F if dimU = n

U ⋔ F and U@F̂n if dimU = n− 1

U ⋔ E ∪ (E + ℓ) and U@F̂n if dimU = n− 2.

Set

Z := {U ∈ X | U satisfies 1., 2., or 4.}

Yi := {U ∈ Z | U ∈ Y0 or dimU ≤ i}, 1 ≤ i ≤ n− 2.

Note that Y0 ⊆ Z since if dimU < n then U ⋔̃E ⇐⇒ U ⋔ E .
Let U ∈ Yi \ Yi−1. We have that U 6≤ ℓ⊥ and dimU = i ≤ n − 2. We get Y <U

i−1 = Z<U . Since

ℓ 6≤ U (otherwise U ≤ U⊥ ≤ ℓ⊥), we can apply Step 5 of the proof of [Abr96, Proposition 14] to
get that FlagZ<U ∈ C2.

On the other hand, Y >U
i−1 = Y >U

0 and we have Flag Y >U
0 ∈ C3 by [Abr96].

Next, we treat U ∈ Y with dimU = n− 1. To cover these elements, we define

Yn−1 := Z ∪ {U ∈ Y | dimU = n− 1 and Y >U
0 6= ∅}.

Let U ∈ Yn−1 \ Yn−2. Then Y <U
n−2 = Z<U and FlagZ<U ∈ C2. Furthermore, we have Y >U

n−2 =

Y >U
0 6= ∅. Note that dimFlag Y >U

0 = 0 since Y >U
0 only contains subspaces of dimension n. Hence

it trivially has a (−1)-cone function with cone radius 1.
The dimension increasing filtration is defined by setting

Yi := {U ∈ Y | U ∈ Yn−1 or dimU ≥ 2n− i}, n ≤ i ≤ 2n− 1.

Let U ∈ Yi \ Yi−1 and set k = 2n − i = dimU . We distinguish the cases k = n and k < n.
If k = n, then Y >U

n−1 = ∅ since there is no totally isotropic subspace of dimension > n. This
is fine for our sake, since ∅ ∗ A = A for an arbitrary simplicial complex A. On the other hand,
Y <U
n−1 has again a filtration starting from an element in C1. To describe the filtration, we set

E ′ := (E ∩ U) ∪ ((E + ℓ) ∩ U),F ′ := F ∩ U,H := H1 := · · · := Hn−2 = F̂n and Hn−1 := {F ∈ F̂n |
U ∩ F = 0}. Furthermore, we set

S := XE ′;H(U ;V ) ∩ {0 < W < U | F ′ 6≤W for all 0 6= F ′ ∈ F ′}.

By Step (20) in [Abr96, Proposition 14], we know that S ≤ Y <U
n−1 and given a cone function of

S we get a cone function of Y <U
n−1 by one application of Theorem 3.2. To see that S has a cone

function, we note that if W ⋔U F ′ then this implies that F ′ 6≤ W . Thus we set E ′′ = E ′ ∪ F ′ and
get XE ′′,H(U ;V ) ⊆ S. We set

A0 := XE ′′,H(U ;V ), Ai = {W ∈ S | W ∈ A0 or dimW ≤ i}, 1 ≤ i ≤ n− 1.
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We follow the by now standard procedure to check that this is a valid filtration. LetW ∈ Ai \Ai−1.
Then A>Wi−1 = A>W0 = XE ′′,H(U ;V )>W and by Step 4. in [Abr96, Lemma 33] FlagXE ′′,H(U ;V )>W ∈

C1 . On the other hand, A<Wi−1 = S<W . Note that if W ∈ S and W ′ ∈ XE ′;H(U ;V ) such that
W ′ ≤W then W ′ ∈ S since if F ′ 6≤W then F ′ 6≤W ′ ≤W . Thus

S<W = XE ′;H(U ;V )<W = {0 < W ′ < W | W ′ ∩ E ′,W ′@Hj for dimW ′ = j} = XE ′∩W,H(W ;V )

and FlagXE ′∩W,H(W ;V ) ∈ C1. Hence we got a filtration

FlagA0 ⊆ . . .FlagAn−1 = Flag S ⊆ Flag Y <U
n−1

of length n = dimU which satisfies the assumptions.
If dimU < n, then Y <U

i−1 = Z<U and we again have FlagZ<U ∈ C3. Additionally, we have

Y >U
i−1 = Y >U for which Abramenko shows that Flag Y >U ∈ C3.
Hence all the condition of Theorem 6.13 are satisfied.

The following remark from [Abr96] gives the connection between XE(V ) and YE(V ).

Remark 6.24. Let τ = {E1, . . . Er} be a simplex of ∆̃ = Orifl X̃ and set E = E(a) = {Ei, E
⊥
i |

1 ≤ i ≤ r}. Then E ∩ Un = ∅, YE(V ) = XE(V ), en ≤ 2, en−1 = en+1 = 0 and ei ≤ 1 for all other
1 ≤ i ≤ 2n− 1.

Corollary 6.25. Let ∆̃ be a building of type Dn over the field K, and a ∈ ∆̃ be a simplex. If
|K| ≥ 22n−1, then ∆̃0(a) has an (n − 2)-cone function with Radj(Cone∆̃0(a)) ≤ 2R(n − 1),−1 ≤

j ≤ n− 2, where R(n) does not depend on K.

Proof. By Theorem 6.23, we have that YE(a)(V ) has cone function with radius ≤ R(n). By Re-

mark 6.24, we have XE(a)(V ) = YE(a)(V ). Thus 6.10 yields a cone function for ∆̃0(a) = T̃E(a)(V )
with cone radius bounded by 2R(n).
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[OP22] Ryan O’Donnell and Kevin Pratt. High-dimensional expanders from Chevalley groups.
In 37th Computational Complexity Conference, volume 234 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 18, 26. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2022.

[OS24] Ryan O’Donnell and Noah G. Singer. Coboundary expansion inside Chevalley coset
complex HDXs, 2024.
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