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Abstract

High-dimensional expanders are a generalization of the notion of expander graphs to sim-
plicial complexes and give rise to a variety of applications in computer science and other fields.
We provide a general tool to construct families of bounded degree high-dimensional spectral
expanders. Inspired by the work of Kaufman and Oppenheim, we use coset complexes over
quotients of Kac–Moody–Steinberg groups of rank d + 1, d-spherical and purely d-spherical.
We prove that infinite families of such quotients exist provided that the underlying field is of
size at least 4 and the Kac–Moody–Steinberg group is 2-spherical, giving rise to new families
of bounded degree high-dimensional expanders. In the case the generalized Cartan matrix we
consider is affine, we recover the construction in [OP22] (and thus also [KO18]) by considering
Chevalley groups as quotients of affine Kac–Moody–Steinberg groups. Moreover, our construc-
tion applies to the case where the root system is of type G̃2, a case that was not covered in
earlier works.

1 Introduction

Expander graphs can be described as being highly connected yet sparse, despite how contradictory
this may seem. The notion of expander graphs can be traced back to the 70s and proved useful in
computer science, for example for constructing networks that are reliable as well as cost-effective. A
lot of research and work has been devoted to expander graphs, involving not only mathematicians.
We refer to [Lub12] for a survey.

The notion of expansion has been extended to higher dimension, yielding several, non-equivalent,
definitions of expansion for simplicial complexes. Each has its own advantages and disadvantages.
Among the most used generalizations are geometric expanders, topological expanders, coboundary
expanders, cosystolic expanders and, finally, spectral expanders. These different notions are sum-
marized in the survey [Lub18]. High-dimensional expanders are connected to theoretical computer
science, in particular to locally testable codes and to quantum LDPC codes. They are also related to
matroid bases and the resolution of the Mihail-Vazirani conjecture ([MV89]). For more perspectives
on high-dimensional expanders, see [GK23].
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Similar to the study of expander graphs, one main goal is to construct infinite families of high-
dimensional expanders, with growing size but with constant bounded degree. The first construction
of such families was presented in 2005 by Lubotzky, Samuels and Vishne. The construction relies
on the theory of Bruhat–Tits buildings and gives rise to so-called Ramanujan complexes ([LSV05]).
The next construction by Kaufman and Oppenheim from 2018 ([KO18]) uses the more elementary
tools of coset complexes over explicit groups to construct spectral high-dimensional expanders. This
construction was generalized four years later by O’Donnell and Pratt ([OP22]) to all Chevalley
groups except those of type G2. Our construction will, in some sense, again be a generalization
of the two aforementioned ones. The main novelty we introduce is that our construction is based
on Kac–Moody–Steinberg groups (KMS groups) whose definition is recalled in Section 3. We give
a general tool to produce high-dimensional expanders for any nice family of finite quotients of the
KMS groups. In particular, our approach allows us to define infinite families of high-dimensional
expanders associated to the root system G2.

In this paper, we work with the notion of local spectral expansion for simplicial complexes. For a
simplicial complex X , we will say it is a local spectral expander (or HDX for short) if all underlying
graphs of all links in X have good expansion properties. In particular, we rely on Oppenheim’s
trickling down theorem (see [Opp18]). This result provides an easy criterion to determine expansion
for a simplicial complex: given good connectivity properties of the simplicial complex X , we only
need to check the expansion properties of the links in X that have dimension 1, that is, those links
which are graphs.

This tool by Oppenheim has been used in [KO18], where the authors prove that the coset complex
associated to some elementary matrix groups over a ringR and some well-chosen subgroups have local
spectral expansion. A coset complex CC(G; (Hi)

d
i=0) over a group G and subgroups H0, . . . , Hd ≤ G

is a pure, d-dimensional simplicial complex with vertex set
⊔d
i=0G/Hi and the maximal faces are of

the form {gH0, . . . , gHd} for g ∈ G (see Definition 2.4). In [OP22], O’Donnell and Pratt generalize
the construction described by Kaufman and Oppenheim to construct local spectral high-dimensional
expanders from Chevalley groups, also using the trickling down theorem.

We consider a further generalization of Chevalley groups ChevA(k). Chevalley groups are con-
structed from finite-dimensional Lie algebras encoded by a Cartan matrix A and a field k. A similar
construction for generalized Cartan matrices yields groups associated to infinite-dimensional gener-
alizations of the finite-dimensional simple Lie algebras called Kac–Moody algebras. More precisely,
we look at Kac–Moody–Steinberg groups. They can be defined as fundamental groups of certain
complexes of finite p-groups, where p is a fixed prime number. The finite p-groups involved in the
construction are the positive unipotent subgroups of basic Levi subgroups of spherical type in a
2-spherical Kac–Moody group over a finite field. A specific Kac–Moody–Steinberg group first ap-
peared in [EJZ10] and [Ers12] as an example of a Golod–Shafarevich group with property (T). The
rank 3 case has been further investigated in [CCKW22].

Kac–Moody groups and thus also Kac–Moody–Steinberg groups are determined by the underlying
root system which can be described using a generalized Cartan matrix A = (Ai,j)i,j∈I or a Dynkin
diagram on |I| nodes, which is a labelled, oriented graph where the edges are determined by the
entries of A (see Section 3). We call |I| the rank of A. A subset J ⊆ I is called spherical if the
submatrix (Ai,j)i,j∈J of the generalized Cartan matrix (GCM) is of finite type, which in particular
implies that the associated root system is finite. A GCM is called n-spherical if every subset of size
n is spherical.

A 2-spherical Kac–Moody–Steinberg group UA(k) over a field k (or KMS group for short) is generated
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by its root subgroups Ui (also called local groups), associated to the simple root αi for i ∈ I. We
assume for our construction that the GCM A is of rank d+1, d-spherical and purely d-spherical (i.e.
every spherical subset is contained in a spherical subset of size d). This includes the affine types.
We set Uı̂ = 〈Uj | j ∈ I \ {i}〉.
Our construction exploits the fact that, in general, Kac–Moody–Steinberg groups have infinite fam-
ilies of finite quotients in which the local groups embed. From such data, we construct a coset
complex and prove it has high-dimensional spectral expansion.

Our main result is the following.

Theorem A (Theorem 4.3). Let G be a finite group, φ a surjective morphism from a rank d + 1,
d-spherical, purely d-spherical Kac–Moody–Steinberg group UA(k) to G and let Hi be the images of
the Uı̂ in G. We consider the coset complex X of G with respect to the subgroups {Hi}i∈I :

X = CC(G; (Hi)i∈I).

If the map φ : UA(k) → G satisfies

(a) φ is injective on the local groups UJ := 〈Uj | j ∈ J〉 for each spherical subset J ⊆ I

(b) for every spherical subsets J,K ⊆ I we have

φ(UJ ) ∩ φ(UK) = φ(UJ ∩ UK),

then X is a pure d-dimensional simplicial complex. Moreover, there exists constants γ > 0, where γ
only depends on the field k and the GCM A (see Theorem 4.3 for the exact values), and ∆ > 0 such
that the following hold.

1. For any face σ of dimension i ≤ d− 2, the link of σ, linkX(σ), is connected. In particular, X
is connected.

2. For all v ∈ X(0): |{σ ∈ X(d) : v ⊆ σ}| ≤ ∆.

3. For any σ ∈ X(d− 2) : λ2(linkX(σ)) ≤ γ, where λ2(linkX(σ)) is the second-largest eigenvalue
of the weighted random walk operator on linkX(σ).

4. G acts sharply transitively on the maximal faces of X.

In particular, if k is chosen such that γ ≤ 1
d

then X is a
Ä

γ
1−(d−1)γ

ä

– spectral high dimensional
expander.

In case the GCM is 3-spherical and the finite field k is of size ≥ 5, it is known that UA(k) is residually
p (where p is the characteristic of the field k). Thus, we get infinite families of finite quotients such
that the projections are injective enough to satisfy the conditions in Theorem A. In the case the
GCM is 2-spherical, even though the group is not residually p, we can also construct families of
finite quotients satisfying the requirements of Theorem A (this is done in Section 3.3).

Another way to get families of finite quotients of certain KMS groups is by starting with a spherical
root system Å and its affinization A. Then we get a natural morphism from the KMS group UA(k)
to the Chevalley group associated to Å over the polynomial ring in one variable Chev

Å
(k[t]) which

is injective on the local groups. Fixing a family of irreducible polynomials of growing degree fm
and passing to the quotient Chev

Å
(k[t]/(fm)) gives rise to the desired family of maps. The latter

choice of quotients yields high-dimensional expanders that are very similar to the ones considered in
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[KO18] and [OP22]. However, there are some differences with the techniques we use for bounding
the degree in the complexes.

To summarize, we get the following result.

Corollary B (Corollary 4.4). Let A be a 2-spherical GCM of rank at least 3 and let k be a finite
field of size at least 4. There exists an infinite family of finite index subgroups N1, N2, · · ·E UA(k),
with [UA(k) : Ni] → +∞ such that if we set Gi := UA(k)/Ni, φi : UA(k) → Gi the quotient map,
H

(i)
j := φi(U̂), j ∈ I the images of the local groups and Xi := CC(G; (H(i)

j )j∈I), then (Xi)i∈N
is a

family of bounded degree high-dimensional spectral expanders.

This paper is organized as follows. First, in Section 2, we introduce the necessary combinatorial tools
needed for our result. We state the notion of high-dimensional spectral expansion in Section 2.1, then
we introduce coset complexes in Section 2.2, and finally we talk about chamber systems and their
relation to coset complexes in Section 2.3. Section 3 introduces the necessary Kac–Moody theory.
We discuss Kac–Moody–Steinberg groups and their root groups in Section 3.1. In Section 3.2 we take
a look at the action of Kac–Moody groups on (twin) buildings and its consequences. We combine the
results to show the existence of finite quotients of Kac–Moody–Steinberg groups in Section 3.3. This
is necessary for the construction of families of expanders. Section 4 contains our main result, that is
proved in Sections 4.1 to 4.4. In Section 5 we discuss how our construction relates to constructions
using Chevalley groups. Section 5.1 provides the ideas and basic steps of the construction. The
results are proved in Section 5.2. In Section 5.3, we give an explicit example of our construction in
the case where the Chevalley group is SL3. Finally, we make general remarks and comments about
our construction in Section 6. In Section 6.1, we compare our construction to previous results by
O’Donnell and Pratt [OP22] and Kaufmann and Oppenheim [KO18]. In Section 6.2, we restate our
main result in a more general setting that does not rely on Kac–Moody theory.
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2 Preliminaries

We will write N for the set of non-negative integers and N∗ for the set of positive integers.
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2.1 High-dimensional spectral expanders (HDX)

Expander graphs are sparse yet highly connected graphs. They can be defined in several ways (see
[Lub10] for an overview), but all definitions are equivalent. In the case of simplicial complexes of di-
mension d ≥ 2, this is not the case anymore and several notions exist: coboundary expanders, cosys-
tolic expanders, topological expanders, geometric expanders, spectral expanders etc. (see [Lub18]).
In this paper, we will consider the notion of λ-spectral expansion for families of simplicial complexes.

A simplicial complex X with vertex set X(0) is a collection of subsets of X(0) satisfying:

• {v} ∈ X for every v ∈ X(0);

• If σ ∈ X and τ ⊆ σ then τ ∈ X .

For i = −1, 0, 1, 2 . . . we denote by X(i) the set of subsets of X(0) of size i+1, where we follow the
convention of identifying a vertex v with the set containing it {v}. An element σ ∈ X(i) is called
a face of dimension i or a simplex, and we will usually refer to elements in X(0) as vertices and
elements in X(1) as edges of the simplicial complex. If there exists d ∈ N such that X(k) = ∅ for
all k > d and X(d) 6= ∅, then X is said to be finite dimensional and the dimension of X is d. A
simplicial complex X of dimension d is pure if every face is contained in a maximal face of dimension
d. For a simplex σ in a d-dimensional simplicial complex, we define deg(σ) = |{τ ∈ X(d) | σ ⊆ τ}|
and we say that X is of ∆-bounded degree if every vertex belongs to at most ∆ maximal faces, i.e.
deg(σ) ≤ ∆ for all non-empty σ ∈ X . We will only work with finite, pure simplicial complexes of
bounded degree.

For a face σ ∈ X , we define its link in X , denoted linkX(σ), to be the set of simplices τ such that
τ ∪ σ ∈ X and τ ∩ σ = ∅, or equivalently, linkX(σ) = {τ \ σ | τ ∈ X, σ ⊆ τ}. The k-skeleton of a
simplicial complex X is X(0) ∪ · · · ∪X(k), the collection of all faces of dimension up to k.

We are particularly interested in the 1-skeleton of the complex X (that is, the underlying graph) and
the 1-skeleton of the links, linkX(σ) for σ ∈ X(i) and i ≤ d − 2. We say that a simplicial complex
is connected if its 1-skeleton is a connected graph. We denote by Kσ the weighted 1-skeleton of
linkX(σ) (omitting X and the weight considered as it will be clear from the context) where a weight
on the simplicial complex X is defined as follows.

Definition 2.1 ([Opp18, Definition 2.1]). Let X be a d-dimensional simplicial complex. A weight
w on X is a function w :

⋃
−1≤k≤dX(k) → R+. The weight function is called balanced if for every

−1 ≤ k ≤ d and every τ ∈ X(k), we have
∑

σ∈X(k+1),τ⊂σ
w(σ) = w(τ).

A simplicial complex X with a balanced weight function will be called a weighted simplicial complex.

We will work with a particular choice of weight. The idea here is to assign weight 1 to each maximal
dimensional simplex and then extend the weight function such that it is balanced. We get the
following weight function. For τ ∈ X(k), we define it as

w(τ) = (d− k)! |{σ ∈ X(d) : τ ⊆ σ}| .

For every −1 ≤ k ≤ d − 2, τ ∈ X(k), the one-skeleton of linkX(τ) will inherit the weight from X .
Explicitly, given τ ∈ X(k) and {u, v} ∈ linkX(τ)(1), we have

wτ ({u, v}) = (d− k − 2)! |{σ ∈ linkX(τ)(d − k − 1) : {u, v} ⊆ σ}| .

5



Next, we consider the weighted random walk on Kσ, that is we perform a random walk where the
probability of choosing an edge is proportional to the weight of that edge. If wσ({u, v}) is the weight
of the edge {u, v} in link(σ), then

Mu,v =
wσ({u, v})∑

w∼uwσ({u,w})

defines the weighted random walk operator M acting on ℓ2(linkX(σ)(0)). We will write λ2(Kσ) for
the second largest eigenvalue of M . Recall that M has largest eigenvalue equal to 1.

If we consider the link of a simplex τ of dimension d − 2, the random walk with respect to this
choice of weight, for X and thus for linkX(τ), is simply the standard random walk (as seen on an
unweighted graph).

The definition of λ-spectral expansion we consider is the following, where λ is a positive real number.

Definition 2.2. ([Opp18,KO18]) A d-dimensional, pure, finite simplicial complex X is said to be
a λ-spectral (one-sided) high-dimensional expander if λ2(Kσ) ≤ λ for all faces σ of X of dimension
at most d− 2.

We will write λ-HDX or simply HDX throughout the paper for shorter notation.

The spectral notion of expansion considered here is a natural one to consider for simplicial complexes
as it implies optimal mixing of high order random walks (see [KM17,KO20,KO23]). Such a property
is desirable since, if combined with good symmetries of the HDX, allows developing Low-Density-
Parity-Check (LDPC) codes, among other applications (see e.g. [EKZ20]).

By analogy with the graph theoretic setting, our goal is to construct families of λ-HDXs: that
is a collection {Xn}n∈N of d-dimensional pure simplicial complexes of bounded degree having an
increasing number of vertices and such that they are λ-HDXs for n large enough.

To prove a simplicial complex is a HDX in the sense of Definition 2.2, we will use the following
result.

Theorem 2.3 ([Opp18]). Let X be a d-dimensional connected, pure simplicial complex and 0 < γ ≤
1
d

such that

(a) X is connected;

(b) linkX(σ) is connected for all σ ∈ X(i) for i ≤ d− 2;

(c) λ2(Kσ) ≤ γ for all σ ∈ X(d− 2).

Then X is a
Ä

γ
1−(d−1)γ

ä

– HDX.

This "trickling down" theorem states that, given good connectivity of the complex X , it suffices to
prove expansion for the links of dimension d− 2 (which are graphs).

2.2 Coset complexes

In this section, we recall the definition and some known facts about coset complexes, following the
summary on the same topic in [OP22].

Definition 2.4. Let G be a group and H = (H0, . . . , Hd) be a family of subgroups of G. The coset
complex CC(G;H) is the simplicial complex with
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• vertex set
⊔d
i=0G/Hi

• a set of vertices {g1Hi1 , . . . , gkHik} forms a (k−1)-simplex in CC(G;H) if and only if
⋂k
j=1 gjHij 6=

∅.

The simplicial complex CC(G;H) is pure and d-dimensional.

An equivalent characterization of a simplex in CC(G;H) is that a set of vertices {g1Hi1 , . . . , gkHik}
forms a simplex if and only there exists g ∈ G such that gHij = gjHij for all j = 1, .., k. In
particular, the maximal simplices of CC(G;H) are of the form

{gH0, . . . , gHd}

for g ∈ G.

Note that the set of vertices is partitioned into d + 1 subsets G/Hi for i = 0, . . . , d such that for
any simplex σ ∈ CC(G;H) we have |σ ∩G/Hi| ≤ 1 for all i. In that case, we say that CC(G;H) is a
(d+ 1)-partite simplicial complex.

Examples of coset complexes are Coxeter complexes and certain buildings, for example when con-
sidering an isotropic semisimple algebraic group and its parabolic subgroups.

Definition 2.5. The type of a simplex {g1Hi1 , . . . , gkHik} in CC(G;H) is the set of indices {i1, . . . , ik} ⊆
{0, . . . , d}.
Note that the type of a simplex can be defined for any partite simplical complex. We observe the
following.

Lemma 2.6. The group G acts on CC(G;H) by left multiplication. This action is type-preserving
(it does not change the type of a simplex) and transitive on maximal faces. The action is sharply
transitive if

⋂d
i=0Hi = {1}.

Remark 2.7. The converse of the above lemma is also true in the following sense. Given a pure,
d-dimensional d+1-partite complex X (i.e. a simplical complex with a type function on the vertices
such that no two vertices of the same type are adjacent) and a group G acting by type preserving
automorphisms on X such that the action on X(d) is transitive, then X isomorphic to a coset
complex. If we fix one maximal simplex {v0, . . . , vd} ∈ X(d) and denote Hi = StabG(vi), then
X ∼= CC(G; (Hi)

d
i=0). A proof of this can be found for example in [KO23, Proposition 5.5].

Definition 2.8. Given a collection of subsets H = (H0, . . . , Hd) of a group G and a type ∅ 6= T ⊆
{0, . . . , d} we write

HT :=
⋂

i∈T
Hi

and set
H∅ := 〈H0, . . . , Hd〉 ≤ G.

The following two well-known facts will be very useful. For detailed proofs, see [HS19, Lemma 3.3
and Lemma 3.4].

Proposition 2.9. CC(G,H) is connected if and only if H∅ = G.

Proposition 2.10. Let σ be a face in CC(G,H) of type T 6= ∅. Then the link of σ is isomorphic to
the coset complex CC

(
HT ,

(
HT∪{i} : i /∈ T

))
.
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2.3 Chamber systems

In this section, we introduce the notion of chamber system, which is another approach to describe
partite complexes like the coset complexes and buildings. For the exposition we follow [Sch95].
We introduce the notion of a chamber system being m-simply connected which is used later in
Proposition 3.8 to show properties of the KMS-groups.

Definition 2.11. [Sch95, Definition 1.2.1] A chamber system over some index set I is a set C
together with equivalence relations ∼i on C for each i ∈ I. The elements of C are called chambers.

Similar to coset complexes, we can construct chamber systems using a group and a family of sub-
groups.

Proposition 2.12. [Sch95, Proposition 1.4.5] Let G be a group, B ≤ G a subgroup and Gi, i ∈ I
a family of subgroups of G containing B. Let C(G,B,Gi, i ∈ I) := G/B together with the family of
relations

xB ∼i yB ⇐⇒ xGi = yGi.

Then C(G,B,Gi, i ∈ I) is a chamber system over I.

Definition 2.13. (i) Let (C,∼i, i ∈ I) be a chamber system. A gallery in C is a chain C0 ∼i1
C1 ∼i2 · · · ∼in Cn such that Ck ∈ C, ik ∈ I for all k. We call (i1, . . . , in) the type of the gallery.

(ii) Two galleries C = C0 ∼i1 · · · ∼in Cn, D = D0 ∼j1 · · · ∼jk Dk are called elementary m-
homotopic if there exists a gallery E = E0 ∼h1 · · · ∼hℓ

Eℓ, 0 ≤ k1 < k2 ≤ n and a set J ⊆ I
with |J | ≤ m such that {h0, . . . , hℓ} ⊂ J, {ik1+1, ik1+2, . . . ik2} ⊆ J and such that we have

D = C0 ∼i1 · · · ∼ik1 Ck1
‖

Ck2
‖

∼ik2+1
· · · ∼in Cn.

E0 ∼h1 · · · ∼hℓ
Eℓ

(iii) We call two galleries m-homotopic if they can be connected by a finite sequence of elementary
m-homotopies.

(iv) A chamber system is called m-simply connected if it is connected (i.e. any two chambers can
be connected by a gallery) and every closed gallery is m-homotopic to a gallery of length 0.

Remark 2.14. [Sch95, Chapter 1.3] Let G be a group, Hi, i ∈ I a family of subgroups over a finite
index set I. Set for J ⊆ I : HJ = ∩j∈JHj . Assume that 〈HI\{j} | j ∈ J〉 = HI\J for all J ⊆ I. Then
CC(G; (Hi)i∈I) corresponds to the chamber complex C(G,∩i∈IHi, HI\{i}, i ∈ I) in a natural way:
Given a coset complex X = CC(G; (Hi)i∈I) we consider as chambers C the maximal simplices of X
which are of the form {gHi | i ∈ I}. Note that two maximal simplices {gHi | i ∈ I}, {hHi | i ∈ I}
are equal if and only if h−1g ∈ ∩i∈IHi. Hence the set of maximal simplices corresponds to G/HI .
We say that {gHi | i ∈ I} ∼j {hHi | i ∈ I} if gHi = hHi for all i ∈ I \ {j} which is equivalent to
gHI\{j} = hHI\{j}.

On the other hand, let C(G,∩i∈IHi, HI\{i}, i ∈ I) be a chamber complex. For J ⊆ I we denote for
two chambers C,D ∈ C that C ∼J D if and only if there is a gallery from C to D with type set
contained in J . For C ∈ C the J-residue of C is the set RJ(C) = {D ∈ C | C ∼J D}. In our case,
we have

RJ (gHI) = {hHI | h ∈ g〈HI\{j} | j ∈ J〉} = {hHI | h ∈ gHI\J}.

8



In particular,RI\{i}(gHI) = {hHI | h ∈ gHj}. We define the set of verticesX(0) := {(RI\{j}(gHI), j) |
j ∈ J, g ∈ G} which by the above argument is isomorphic to ⊔j∈JG/Hj . Furthermore, we say that
two vertices (RI\{j}(gHI), j), (RI\{i}(hHI), i) are adjacent if i 6= j and RI\{j}(gHI)∩RI\{i}(hHI) 6=
∅, where the latter is equivalent to gHj ∩ hHi 6= ∅. From here, we build a simplical complex by
defining that a set of vertices forms a simplex if and only if all vertices are pairwise adjacent.

Definition 2.15. [Tit86] Let (Gi)i∈I be a family of groups and let φij : Gi → Gj for (i, j) ∈ J ⊆
I × I be a family of homomorphisms.

The direct limit of the system ((Gi)i∈I , (φij)(i,j)∈J ) is a group G together with homomorphisms
fi : Gi → G such that fi = fj ◦ φij for all (i, j) ∈ J and which satisfies the following universal
property:

Given a group H and homomorphisms gi : Gi → H such that gi = gj ◦ φij for all (i, j) ∈ J then
there exists a unique homomorphism α : G→ H such that gi = α ◦ gi for all i ∈ I.

The group G can be constructed explicitly by taking the free product of the groups Gi, i ∈ I and
making the identifications φij(h) = h for all h ∈ Gi, ∀(i, j) ∈ J .

Remark 2.16. Let (I,≤) be a partially ordered set and let J = {(i, j) ∈ I × I | i ≤ j}. Let (Gi)i∈I
be a family of groups with injective homomorphisms φij : Gi → Gj for all i ≤ j ∈ I such that
φij = φkj ◦φik whenever i ≤ k ≤ j. Then ((Gi)i∈I , (φij)(i,j)∈J ) is called a simple complex of groups,
see [BH99, Definition 12.11]. In this case, the direct limit is called the fundamental group of the
complex of groups.

The following result relates the notion of simple-connectedness of certain chamber systems and direct
limits. It was first stated by J. Tits in [Tit86], we present it in the formulation of [Sch95, Proposition
6.5.2].

Proposition 2.17. [Sch95, Proposition 6.5.2] Let G be a group, B and Pi, i ∈ I, subgroups of G
such that B ⊂ Pi for all i ∈ I. Assume that G is generated by the Pi. Set PJ := 〈Pj : j ∈ J〉 for all
nonempty subsets J ⊆ I, and P∅ := B. The following are equivalent, for a natural number m 6 |I|:

1. the chamber system C (G,B, Pi, i ∈ I) is m-simply-connected;

2. G is the direct limit of the PJ , |J | 6 m with respect to the natural inclusions.

Remark 2.18. In the case when m = 2 and |I| = 3 the result of [AH93, Theorem 2.4] together
with 2.17 show that the chamber system C(G,∩i∈IHi, Hi, i ∈ I) is 2-simply connected if and only
if CC(G; (〈Hj | i ∈ I \ {j}〉)i∈I) is 1-connected, i.e. the zeroth and first homotopy group of the
geometric realisation of the coset complex are trivial. The requirement |I| = 3 is necessary here to
assure that {{i}, {i, j} | i, j ∈ I} = {I \ {i}, I \ {i, j} | i, j ∈ I}.
For m 6= 2, the notions are, to the best of our knowledge, not related. Note that if a chamber system
is m-simply connected then it is also m + 1-simply connected. On the other hand, if a simplical
complex is n-connected then it is also n− 1-connected.

3 Kac–Moody–Steinberg groups

Kac–Moody–Steinberg groups are defined as fundamental groups of certain complexes of finite p-
groups, where p is a fixed prime number. The finite p-groups involved in the construction are the
positive unipotent subgroups of basic Levi subgroups of spherical type in a 2-spherical Kac–Moody
group over a finite field. In Section 3.1, we will define the Kac–Moody–Steinberg groups. We
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briefly discus the action of Kac–Moody groups on (twin) building and deduce properties of the
KMS-groups from that action in Section 3.2. In Section 3.3, we show that nice infinite families of
finite quotients of KMS groups exist. In particular, we will explain why, under certain assumptions,
Kac–Moody–Steinberg groups are residually finite.

3.1 Construction and properties

Definition 3.1. A = (Ai,j)i,j∈I ∈ Matn(Z) is called a generalized Cartan matrix (GCM) if

1. Ai,i = 2 for all i;

2. Ai,j ≤ 0 for all i 6= j;

3. Ai,j = 0 ⇐⇒ Aj,i = 0.

Every GCM A = (Ai,j)i,j∈I gives rise to a Dynkin diagram in the following way. As vertex set,
we take the index set I and two vertices i, j are connected by |Ai,j | edges if Ai,jAj,i ≤ 4 and
|Ai,j | ≥ |Aj,i|, and these edges are equipped with an arrow pointing towards i if |Ai,j | > 1. If
Ai,jAj,i > 4, the vertices i and j are connected by a bold-faced labelled edge with the ordered pair
of integers |Ai,j |, |Ai,j |.
A GCM is irreducible if there exists no non-trivial partition I = I1 ∪ I2 such that Ai1,i2 = 0 for all
i1 ∈ I1, i2 ∈ I2.

Definition 3.2. Let A be a (d+1)×(d+1) generalized Cartan matrix with index set I = {0, . . . , d},
and let J ⊆ I.

(i) The subset J is called spherical if AJ = (Ai,j)i,j∈J is of spherical type, meaning that the
associated Coxeter group (see e.g. [Mar18, Proposition 4.22]) is finite (see e.g. [Bou08, Chapter
6.4.1]). Given n ≥ 2, A is n-spherical if every subset J ⊆ I of size n is spherical.

(ii) We denote by QA the set of spherical subsets of I associated to the generalized Cartan matrix
A.

(iii) A generalized Cartan matrix A is purely n-spherical if every spherical subset J ⊆ I is contained
in a spherical subset of size n. (In particular, no set of size n + 1 is spherical for a purely
n-spherical generalized Cartan matrix.)

(iv) To a generalized Cartan matrix A we can associate the following sets:

• a set of simple roots Π = {αi | i ∈ I},
• a set of real roots Φ ⊆⊕i∈I Zαi,

• two sets, one of positive and one of negative real roots Φ+ =
⊕

i∈I Nαi ∩Φ,Φ− = −Φ+ .

Note that Φ = Φ+ ⊔ Φ−. More details can be found e.g. in [Mar18, Chapter 3.5].

We assume for the rest of Section 3 that A is 2-spherical. Let k be a finite field. To avoid degenerate
cases, we assume |k| ≥ 4.

Let G = GA(k) be the (minimal) Kac–Moody group of type A over a field k. This group is the
quotient of the free product of the root subgroups

Uα = 〈uα(t); t ∈ k | uα(t)uα(s) = uα(t+ s) for all s, t ∈ k〉 ∼= (k,+)
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for all real roots α ∈ Φ and the torus

Tk = 〈rαi ; r ∈ k×, i ∈ I | rαisαi = (rs)αi for all r, s ∈ k×〉 ∼= (k×)|I|

with respect to certain relations, similar to those of Chevalley groups, see [Mar18, Definition 7.47].
In particular, if A is a classical Cartan matrix, then GA(k) coincides with the Chevalley group of
type A over k. For more details about Chevalley groups, see also Section 5.

To each spherical subset J ⊂ I, we associate the subgroup UJ = 〈Uj | j ∈ J〉 ≤ GA(k), where
Uj := Uαj

= {uαj
(λ) | λ ∈ k} is the root subgroup of G associated to the simple root αj . We set

U∅ = {1}. We will refer to subgroups of the form UJ as local groups. The tuple of groups (UJ)J∈QA
,

together with their natural inclusions, defines a simple complex of groups over the (finite) poset QA
(Remark 2.16). We denote by UA(k) the fundamental group of that complex of groups, and we call
it the Kac–Moody–Steinberg group of type A over k or KMS group for short. Thus, the group UA(k)
is the direct limit of the local groups with respect to all possible inclusions (see Definition 2.15):

UA(k) = ∗J∈QA
UJ/(UJ →֒ UK , J ⊆ K ∈ QA).

We again denote by UJ the canonical image of UJ in UA(k) for each J ∈ QA.

Since the base field k is finite, each UJ is a finite p-group, where p is the characteristic of k and the
KMS group UA(k) is finitely presented.

A homomorphism f : UA(k) → G is said to be injective on the local groups, if f
∣∣
UJ

is injective for

every J in QA. Note that since UA(k) is, by definition, the fundamental group of the complex of
groups (UJ)J∈QA

, any family of maps fJ : UJ → G for J ∈ QA such that fK
∣∣
UJ

= fJ for J ⊆ K

factors through UA(k).
Remark 3.3. For two roots α, β ∈ Φ we write ]α, β[N= {n1α+ n2β ∈ Φ | n1, n2 ∈ N∗} and [α, β]N =
]α, β[

N
∪ {α, β}.

We have the following abstract presentation for the KMS groups:

UA(k) =
〈
uβ(t) for t ∈ k, β ∈ [αi, αj ]N, i, j ∈ I | R

〉

where the set of relations R is defined as:

for all {α, β} ⊆ [αi, αj ]N, i, j ∈ I, t, u ∈ k:

[uα(t), uβ(u)] =
∏

γ=kα+lβ∈]α,β[N

uγ
Ä

Cαβk,l t
kul
ä

.

The constants Cα,βk,l are called structure constants and their precise values can be found for example
in [Car89].

Since A is 2-spherical, the subgroups Uβ, for β ∈ [αi, αj ], are contained in the group generated
by the root groups Uαi

, Uαj
(see [Abr96, Proposition 7]). This can be seen using the commutator

formula, similar to [OP22, Lemma 3.13].

Example 3.4. If we set k = Fp and Aij = −1 for all i 6= j, then UA(k) has the following presentation:

UA(k) = 〈x1, . . . , xd |xpi , [[xi, xj ], xj ] (i 6= j)〉.

This example appears in [EJZ10, Proposition 7.4] as an example of a Golod-Shafarevich group with
property (T ) provided d ≥ 6 and p > (d− 1)2.
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Remark 3.5. Let U+ = U+
A (k) = 〈uα(λ) | α ∈ Φ+, λ ∈ k〉 ≤ GA(k) be the unipotent subgroup

of the positive standard Borel subgroup of the Kac–Moody group. For example, in SLn(k), the
subgroup U+ corresponds to the subgroup of upper triangular matrices with ones on the diagonal.

There is a homomorphism from the KMS group to U+:

ψ : UA(k) → U+ : uj(λ) 7→ uαj
(λ).

This homomorphism is injective on the local groups UJ for J ∈ QA.

3.2 Action on (twin) buildings and its consequences

A Kac–Moody group GA(k) together with its root subgroups Uα and torus Tk forms an RGD-system
(GA(k), (Uα)α∈Φ, Tk). This was first observed by J. Tits, more details can be found in [AB08, Chapter
8.8] and [Mar18, Theorem 7.69]. The RGD-system gives rise to the following groups

• U+ := 〈Uα | α ∈ Φ+〉, U− := 〈Uα | α ∈ Φ−〉,
• positive and negative Borel subgroup B+ := 〈Tk, U+〉, B− := 〈Tk, U−〉,
• standard parabolic subgroups for J ⊆ I: P±

J := 〈B±, U∓αj
; j ∈ J〉.

Associated to the RGD-system is a twin building, which is a pair of two buildings ∆+,∆− together
with additional structure which includes an opposition relation between the chambers (maximal
simplices) of ∆+ and ∆− (see [AB08, Chapter 8]). As chamber systems, the buildings can be
described as

C+ = C(GA(k), B+, P
+
{i}; i ∈ I), C− = C(GA(k), B−, P

−
{i}; i ∈ I).

They also can be described using the terminology of coset complexes (compare to Remark 2.14)

∆+ = CC(GA(k); (P+
I\{i})i∈I), ∆− = CC(GA(k); (P−

I\{i})i∈I).

In both descriptions, chambers correspond to cosets in G/B±. Two chambers gB+, hB− are opposite
if and only if g−1h ∈ B+B− (see [AB08, Equation (6.25)]). Two lower dimensional simplices τ1, τ2
are called opposite if they are contained in chambers σ1, σ2 such that σ1 is opposite σ2.

We call the chamber 1B+ the positive fundamental chamber. We denote by C−
op

⊆ C− the set of
chambers opposite 1B+, and analogously by ∆−

op
⊆ ∆− the complex opposite 1B+.

Lemma 3.6. [AB08, Corollary 8.32] The group U+ acts sharply transitively on the set C−
op of

chambers opposite the positive fundamental chamber.

Let UJ := 〈Uα | α ∈ Φ+ ∩⊕j∈JZαj〉. If the GCM A is 2-spherical and |k| ≥ 4 this group is equal to
UJ = 〈Uαj

| j ∈ J〉, which follows from the same argument as Proposition 3.8. The following lemma
is well known to experts, but we could not find a reference for the statement, hence we give a short
proof.

Lemma 3.7. Let ∅ 6= J ( I be a proper subset of I. Then

U+ ∩ P−
J = UJ .

Proof. It is immediate from the definition that UJ ⊆ U+ ∩ P−
J .
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To see the other inclusion, let c− = 1B− be the negative fundamental chamber and consider its
J-residue in C−.

RJ(c−) = {hB− | h ∈ 〈P−
{j} | j ∈ J〉} = {hB− | h ∈ P−

J }.

Its stabilizer in G = GA(k) is StabG(RJ (c−)) = P−
J .

It follows from [AB08, Corollary 5.30] that RJ (c−) = C(P−
J , B−, Pj , j ∈ J) =: C−

J is a building in
its own rights, of type AJ := (Aij)i,j∈J . Similarly, we get the building C+

J := C(P+
J , B

+, P+
j , j ∈ J).

This pair gives again rise to a twin building such that C−
J,op

∼= RJ(c−) ∩ C−
op

.

Further note that the group UJ is the U+ for the smaller twin building of type AJ .

Now, let g ∈ U+ ∩ P−
J . Then g stabilizes RJ (c−) by the above results and thus acts on C−

J .
Furthermore, gc− is still opposite c+ since g ∈ U+. Hence gc− ∈ RJ (c−) ∩ C−

op
. By Lemma 3.6 and

the above considerations, UJ acts transitively on RJ (c−)∩C−
op

. Thus we can find u ∈ UJ = UJ such
that ugc− = c−. Hence ug ∈ U+ ∩ StabG(c−) = U+ ∩ B− = {1}, the last equality follows from
[AB08, Section 8.7]. Therefore we conclude g ∈ UJ as desired.

Using Remark 2.7 and Lemma 3.7, we want to describe ∆−
op

as a coset complex. The chamber

1B− = {1P−
I\{i} | i ∈ I} is clearly opposite 1B+. Thus it suffices to study the stabilizers inside U+

of its vertices:
StabU+(P−

I\{i}) = U+ ∩ P−
I\{i} = UI\{i}

where the last equality follows from Lemma 3.7. Hence ∆−
op

∼= CC(U+; (UI\{i})i∈I) as simplical
complexes and C−

op
∼= C(U+, {1}, Uαi

; i ∈ I), where we used that ∩i∈IUαi
= {1}.

In case the GCM that we started with is spherical, then the building ∆+ is finite and has an
opposition relation within itself. In that case, two chambers gB+, hB+ are opposite if and only if
h−1g ∈ B+w0, B+, where w0 is the longest element in the Weyl group corresponding to the GCM.
We analogously define ∆op ⊆ ∆+ to be the complex opposite the fundamental chamber 1B+. Again
we have that

CC(U+; (UI\{i})i∈I) ∼= ∆op.

This can be seen by a similar argument as above, but is also mentioned in [Abr96, Page 67].

In the rest of this section, we investigate how the above observations imply properties of the KMS-
groups.

The following Proposition 3.8 is well-known to experts, but the proof is scattered over different
sources. For the convenience of the reader, we gather here all the pieces. Note that part (b) is a direct
analogue to [DM07, Corollary 1.2]. In this formulation, it was first mentioned in [Ers08, Theorem
6.2].

Proposition 3.8. Let k be an arbitrary field. Let ψ : UA(k) → U+ : uj(λ) 7→ uαj
(λ) be as in

Remark 3.5.

(a) If A is 2-spherical and |k| ≥ 4, then the map ψ is surjective.

(b) If A is 3-spherical and |k| ≥ 5, then U+ is the direct limit of the root subgroups of rank at
most 2 and thus

UA(k) ∼= U+
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Sketch of the proof. For part (a), note that C−
op

is gallery-connected if and only if U+ = 〈Uαi
| i ∈ I〉.

The fact that C−
op

is gallery-connected under the assumption that |k| ≥ 4 and that A is 2-spherical
can be found in [AM97]. Since each Uαi

is in the image of ψ, this implies surjectivity.

For part (b), we want to apply Proposition 2.17 for m = 2 to C−
op

. Thus, we need to show that C−
op

is simply 2-connected. [DM07, Theorem 1.1] reduces the problem to the following

- for each rank 3 residue R containing the positive fundamental chamber c, the set of chambers
opposite of c in R is simply 2-connected;

- for each rank 2 residue R containing the positive fundamental chamber c, the set of chambers
opposite of c in R is connected.

Since we assume that A is 3-spherical, each rank 3 and rank 2 residue will itself be contained in a
spherical building.

The required results for the rank 3 and rank 2 residues can be found in [HNVM16], generalizing
results of [Abr96].

In the remainder of this section, we mention some properties of the subgroups UJ of UA(k). In
particular, we describe their intersections as we will need them later on.

Proposition 3.9. Assume that A is 2-spherical and k ≥ 2. Let J,K ∈ QA with corresponding local
groups UJ , UK then

UJ ∩ UK = UJ∩K .

Proof. By [Sch95, Theorem 4.3.8], we have for any J,K ⊆ I that P−
J ∩P−

K = PJ∩K . Combining this
with Lemma 3.7, we get

UJ ∩ UK = (U+ ∩ P−
J ) ∩ (U+ ∩ P−

K ) = U+ ∩ (P−
J ∩ P−

K ) = U+ ∩ P−
J∩K = UJ∩K .

3.3 Finite quotients of Kac–Moody–Steinberg groups

In this section, we describe how to construct infinite families of finite quotients of Kac–Moody–
Steinberg groups. To do so, we rely on the properties of the natural map ψ : UA(k) → U+ and the
fact that U+ is residually-p. The local injectivity of the maps we consider allows us to conclude.
The details of those arguments can be found in this section and the explicit construction of infinite
families of finite quotients of the KMS group as well.

We will use the following observation.

Observation 3.10. Let f : X → Y be a homomorphism between two groups X,Y and let A,B ≤ X
be subgroups such that f |A and f |B are injective. Then

f(A) ∩ f(B) = f(A ∩B) ⇐⇒ ker(f) ∩
[
(A \ (A ∩B)) · (B \ (A ∩B))

]
= ∅

where for any sets A′, B′ ⊆ X we define A′ · B′ := {a · b | a ∈ A′, b ∈ B′}.
Lemma 3.11. Let ψ : UA(k) → U+ be as in Remark 3.5 and write UJ = ψ(UJ) for all J ∈ QA. Let
H be any group and φ : U+ → H a homomorphism satisfying
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1. φ|UJ
is injective for all J ∈ QA;

2. φ(UJ ) ∩ φ(UK) = φ(UJ ∩ UK) for all J,K ∈ QA.

Then the composition f = φ ◦ ψ : UA(k) → H satisfies, for all J,K ∈ QA

f(UJ) ∩ f(UK) = f(UJ ∩ UK)

and f is injective on the local groups.

Proof. The map f is injective on the local groups as it is the composition of two maps that are
injective on the local groups.

Let J,K ∈ QA and set U ′
J = UJ \ (UJ ∩UK) and U ′

J = UJ \ (UJ ∩UK) and similarly for U ′
K and U ′

K .
Using Observation 3.10 it suffices to show ker(f) ∩ U ′

J · U ′
K = ∅. Note that ker(f) = ker(φ ◦ ψ) =

ψ−1(ker(φ)). Moreover,

ψ−1(ker(φ)) ∩ U ′
J · U ′

K = ∅ ⇐⇒ ker(φ) ∩ ψ(U ′
J · U ′

K) = ∅. (1)

Since ψ is a homomorphism injective on the local groups, we have ψ(U ′
J · U ′

K) = U ′
J · U ′

K . By
assumption, the equality on the right-hand side of the equivalence in Equation 1 holds.

Theorem 3.12. Let A be a 2-spherical GCM and let k be a finite field of characteristic p. Then
the group U+ is residually-p. If A is 3-spherical and |k| ≥ 5, this also holds for UA(k).

Proof. This is a consequence of [RR06, 1.C Lemma 1]. For the readers convenience, we provide an
argument for the residually finiteness of U+.

We have that U+ is contained in the stabilizer of the fundamental chamber in the positive building
associated to the Kac–Moody group. Thus, the action of U+ stabilizes balls of radius r ∈ N around
the fundamental chamber (in the chamber complex). The point-wise fixers of these balls are then
finite index normal subgroups of U+. Since U+ acts faithfully on the building, the conclusion
follows. In the case where A is 3-spherical and |k| ≥ 5, the groups U+ and UA(k) are isomorphic by
Proposition 3.8.

Note that the sets UJ · UK are finite since they can be embedded into the product of two finite sets.
Theorem 3.12 above together with the fact that |⋃J,K∈QA

UJ · UK | < ∞ and Lemma 3.11 implies
the following corollary.

Corollary 3.13. Let A be a 2-spherical GCM and let k be a finite field of characteristic p such that
|k| ≥ 4. Then, there is an infinite family of finite index normal subgroups N1, N2, · · ·Ef.i. U

+ such
that

1. Ni ∩
Ä⋃

J,K∈QA
UJ · UK

ä

= {1} for all i, and;

2. limi→∞ |U+/Ni| = ∞.

Moreover, the quotient maps

ϕi = φi ◦ ψ : UA(k)
ψ−→ U+ φi−→ U+/Ni

are injective on the local groups and for any J,K ∈ QA we have ϕi(UJ ) ∩ ϕi(UK) = ϕi(UJ ∩ UK).
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4 Main theorem

In this section, we give the proof of the main theorem. We will first show results about the con-
nectivity of the links, and then about the degree of the coset complex we construct. After doing
so we can prove the expansion properties of the links and finally describe some symmetries of our
construction.

For this section, we fix some notation. Let (Ai,j)i,j∈I , I = {0, . . . , d} be a non-spherical generalized
Cartan matrix of rank d + 1 that is d-spherical and purely d-spherical, i.e., the set of spherical
subsets is QA = P(I) \ {I}. Furthermore, let k be a finite field of order |k| = q = pm ≥ 4 and let
Ui ⊆ GA(k) be the root subgroup associated to the simple root indexed by i ∈ I in the Kac–Moody
group GA(k). Let G be a finite group, φ : UA(k) → G be a homomorphism from the KMS group to
G that is injective on the local groups and such that 〈φ(U0), . . . , φ(Ud)〉 = G (i.e. φ is surjective).
We further require that φ satisfies the following intersection property:

φ(UJ ) ∩ φ(UK) = φ(UJ ∩ UK) for all J,K ∈ QA. (IP)

We introduce the following notation.

Definition 4.1. For i ∈ I, we define ı̂ = I \ {i} and

Hi := φ(Uı̂).

For ∅ 6= T ⊆ I, let

HT :=
⋂

i∈T
Hi.

We set H∅ = 〈H0, . . . , Hd〉.
The following lemma is useful when working with the images of the local groups and allows us to
describe such images in terms of subsets of the index set I.

Lemma 4.2. For ∅ 6= T ⊆ I we have HT = φ(UI\T ).

Proof. We have:

HT =
⋂

i∈T
Hi =

⋂

i∈T
φ (Uı̂)

(∗)
= φ

(
⋂

i∈T
Uı̂

)
(∗∗)
= φ

Ä

U⋂
i∈T I\{i}

ä

= φ
(
UI\T

)

where (∗) follows from Equation (IP) and (∗∗) from Proposition 3.9.

In the following theorem, the main result of this paper, we prove that a well-chosen coset complex
associated with a generalized Cartan matrix A, a field k and a complex of groups (UJ)J∈QA

is a
λ-spectral HDX. We maintain the notation used above in the following theorem.

Theorem 4.3. Let G,Hi, i ∈ I be as above and consider the coset complex

X = CC(G; (Hi)i∈I).

Then, X is a pure d-dimensional simplicial complex and
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1. for any σ ∈ X(i), i ≤ d− 2 we have that linkX(σ) is connected. In particular, X is connected.

2. There exists ∆ ∈ N such that for all v ∈ X(0): |{σ ∈ X(d) : v ⊆ σ}| ≤ ∆.

3. For any σ ∈ X(d− 2) : λ2(linkX(σ)) ≤ γ, where γ is specified below.

4. G acts sharply transitively on the maximal faces of X.

In particular, if k and d are chosen such that γ ≤ 1
d
, X is a γ′-spectral HDX for γ′ = γ

1−(d−1)γ . The
exact values for γ are:

• if the Dynkin diagram associated to A has at most single edges, we have γ = 1√
q
;

• if the Dynkin diagram associated to A has at most double edges, we have γ =
»

2
q
;

• if the Dynkin diagram associated to A has a triple edge, we have γ =
»

3
q
.

The following corollary describes how to construct a family of HDX from a Kac–Moody–Steinberg
group.

Corollary 4.4. Let d ≥ 3, A a 2-spherical GCM, and k a finite field of size at least 4. By Corol-
lary 3.13, we have an infinite family of quotient maps ϕi : UA(k) → Gi, where Gi = U+/Ni as in the
notation of the corollary. The maps ϕi are injective on the local groups and satisfy Equation (IP).
Let H(i)

j := ϕi(U̂), j ∈ I be the images of the local groups and set Xi := CC(Gi, (H(i)
j )j∈I).

Then (Xi)i∈N
is a family of bounded degree high-dimensional spectral expanders.

Remark 4.5. The basic construction given in [BH99, Chapter II.12.11] using (UJ )J∈QA
, together

with their natural inclusions, as the complex of groups yields a simplicial complex of dimension d,
where d is the size of the maximal spherical subsets of I. Our goal was initially to explore the
expansion properties of this simplicial complex, obtained via maps φ : UA(k) → G, where G is a
finite group and such that the map φ is injective on the local groups UJ for each J ∈ QA.

However, if φ : UA(k) → G satisfies Equation (IP), the simplicial complex obtained using the con-
struction described in [BH99, Chapter II.12.11] can be simply described in terms of coset complexes
and thus is amenable to an approach similar to [OP22], as is done in this paper.

It is worth noting that the basic construction in [BH99, Chapter II.12.11] yields another natural way
to associate simplicial complexes to complexes of groups and should therefore be kept in mind as a
potential source for other high-dimensional expanders.

The following sections are devoted to the proof of Theorem 4.3. In Section 4.1 we prove that all the
links of X are connected, then in Section 4.2 we bound the number of maximal faces containing a
given vertex of X . In Section 4.3 we prove spectral expansion for the (d− 2)-dimensional links of X
and finally in Section 4.4 we describe some symmetries of our complex. All these sections combined
prove the different statements of Theorem 4.3.

4.1 Connectivity of the links

Proposition 4.6. Let σ ∈ X(i) for i ≤ d− 2 be of type ∅ 6= T ⊆ I. Then

linkX(σ) = CC
(
HT ,

(
HT∪{i} : i /∈ T

)) ∼= CC
Ä

UI\T ,
(
UI\(T∪{i})

)
i∈I\T

ä

.

17



Proof. This follows directly from the fact that φ|UI\T
: UI\T → φ(UI\T ) = HT is an isomorphism of

groups that maps HT∪{i} to UI\(T∪{i}) (see Lemma 4.2).

Proposition 4.7. For ∅ 6= T ( I we have

UI\T = 〈UI\(T∪{i}) : i ∈ I \ T 〉.

Furthermore, we have
H∅ = G.

Proof. Let ∅ 6= T ( I. Then

〈UI\(T∪{i}) : i ∈ I \ T 〉 = 〈Uj : j ∈ I \ (T ∪ {i}), i ∈ I \ T 〉
= 〈Uj : j ∈ ∪i∈I\T I \ (T ∪ {i})〉
= 〈Uj : j ∈ I \ T 〉 = UI\T .

For T = ∅ we get:
G ⊇ H∅ = 〈H0, . . . , Hd〉 ⊇ 〈φ(U0), . . . , φ(Ud)〉 = G

where the last equality follows from the surjectivity assumption on φ.

From Proposition 2.9 together with Proposition 4.6 and Proposition 4.7 we get that for every σ ∈
X(i), i ≤ d− 2 the link linkX(σ) is connected.

4.2 Bounded degree

We want to consider the number of maximal faces that contain a given arbitrary vertex gHi.

Maximal faces inX are of the form {hH0, . . . , hHd}. Two maximal faces {hH0, . . . , hHd}, {h′H0, . . . , h
′Hd}

coincide if and only if h−1h′ ∈ ⋂i∈I Hi = HI = φ(U∅) = {1}. Thus, every element in G gives rise
to a unique maximal face.

Which maximal faces contain a given vertex gHi? Note that:

gHi ∈ {hH0, . . . , hHd} ⇐⇒ gHi = hHi ⇐⇒ h ∈ gHi.

Thus
deg(gHi) = |Hi| = |Uı̂| = |〈Uj | j ∈ I \ {i}〉|.

The cardinality of Uı̂ is equal to |k|ℓ where ℓ is the number of positive roots in the root system of
type (Am,j)m,j∈I\{i} by [Car89, Theorem 5.3.3]. The number of positive roots in the root system of
type (Am,j)m,j∈I\{i} is bounded from above by (|I| − 1)2 = d2 if (Am,j)m,j∈I\{i} is of classical type
(i.e. Ad, Bd, Cd, Dd). Exact numbers can be found in [Bou08, Chapter 6, Section 4].

Thus the coset complexes we obtain are of bounded degree and the bound depends only on the
choice of the generalized Cartan matrix and the field we chose for the Kac–Moody–Steinberg group
UA(k), proving Item 2 of Theorem 4.3.
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4.3 Link expansion

Let σ ∈ X(d− 2) of type T ⊆ I. Then |T | = d− 1 and thus I \ T = {i, j} has two elements. From
Proposition 4.6 we get that

linkX(σ) ∼= CC(Ui,j ;Ui, Uj).

The idea for proving the expansion of the graphs CC(Ui,j ;Ui, Uj) is by considering them as |k|-regular
subgraphs of the spherical building of the corresponding type. This is indeed possible since Ui,j is
the positive unipotent subgroup in the Chevalley group of type A{i,j} and using Section 3.2. The
corresponding spherical building is |k| + 1-regular and its spectrum is known. Hence the following
lemma gives the desired bound on the second smallest eigenvalue of the random walk matrix of
CC(Ui,j ;Ui, Uj). The proof of the lemma only uses basic linear algebra tools and can be found in
[HS19, Lemma 5.5].

Lemma 4.8. Let X be a d-regular, simple graph that is an induced subgraph of a D-regular graph
Y . Then

λ2(X) ≤ D

d
λ2(Y ).

Thus, we investigate the spectrum of the spherical buildings corresponding to the Chevalley groups
of type A2, B2, G2 corresponding to the cases where i, j are connected by a single, double or triple
edge in the Dynkin diagram, respectively.

The eigenvalues of the Laplacian matrix ∆ = Id−M (where M is the random walk matrix) of the
spherical building of rank 2 are computed in [Gar73, Proposition 7.10]. Note that in Garlands work
we have q′ = q(1) = q(2) = |k| (since per definition 1 + q(i) = |P{i}/B| = deg(1P{i}) = |k| + 1).
Hence we can deduce from [Gar73, Proposition 7.10] the following values for the spectrum of the
random walk matrix depending on the type.

The A2 case

Let k = Fq and let M be the random walk matrix of the spherical building of type A2 over k. Then
the spectrum is

spec(M) =

ß

1,

√
q

q + 1
,−

√
q

q + 1
,−1

™

and hence

λ2(CC(Ui,j ;Ui, Uj)) ≤
q + 1

q
·

√
q

q + 1
=

1√
q
.

The B2 case

Let k = Fq and let M be the random walk matrix of the spherical building of type B2 over k. Then
the spectrum is

spec(M) = {1,
√
2q

q + 1
, 0,−

√
2q

q + 1
,−1}

and hence

λ2(CC(U{i,j};Ui, Uj)) ≤
(q + 1)

√
2q

q(q + 1)
=

 

2

q
.
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The G2 case

Let k = Fq and let M be the random walk matrix of the spherical building of type G2 over k. Then
the spectrum is

spec(M) = {1,
√
3q

q + 1
,

√
q

q + 1
, 0,−

√
q

q + 1
,−

√
3q

q + 1
,−1}

and hence

λ2(CC(U{i,j};Ui, Uj)) ≤
(q + 1)

√
3q

q(q + 1)
=

 

3

q
.

Remark 4.9. If q is prime, the bounds on λ2(CC(Ui,j ;Ui, Uj) are sharp in the A2 and B2 case. This
can be seen using the concept of representation angle and the results of [CCKW22, Proposition 7.3].

4.4 Symmetries of the construction

Similar to the constructions of [KO18] and [OP22] but different to the first construction of HDX
giving rise to Ramanujan complexes [LSV05], our simplicial complexes are highly symmetric in the
following sense.

Proposition 4.10. G acts sharply transitively on the maximal faces of X.

Proof. Following Lemma 2.6, it remains to check that H0 ∩ · · · ∩Hd = {1}. But this follows directly
since H0 ∩ · · · ∩Hd = φ(U0̂ ∩ · · · ∩ U

d̂
) = φ(U∅) = {1}.

This proves Item 4 of Theorem 4.3 and thus finishes the proof.

5 Quotients in Chevalley groups

In this chapter, we describe a connection between spherical Chevalley groups and affine Kac–Moody–
Steinberg groups. This allows us to describe our construction with a very concrete example in
SL3 (this is done in Section 5.3) and to compare it to previous constructions of high-dimensional
expanders using coset complexes from [KO18] and [OP22] in Section 6.1.

5.1 Definitions and properties

We start by recalling the definition of Chevalley groups, the connection between spherical and affine
root systems and how this leads to a map from certain KMS groups to Chevalley groups over
polynomial rings.

The most general way to define Chevalley groups is by introducing the Chevalley–Demazure group
scheme, which is a functor from the category of commutative unital rings to the category of groups.
This is done by considering certain Hopf-algebras over Z that are related to semisimple Lie groups.
The notion was established in the work of Chevalley [Che95] and Demazure [Dem65], a formal
definition can be found in [Abe69].

Over fields, Chevalley groups can be defined by giving their so-called Steinberg presentation, see e.g.
[Car89, Theorem 12.1.1]. Note that some definitions consider the group defined below modulo its
center as Chevalley groups. We will not take this into account here.
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Definition 5.1. Corresponding to any irreducible, spherical Cartan matrix Å with root system
Φ̊ of rank at least 2, and any finite field k, there is an associated universal (or simply connected)
Chevalley group, denoted Chev

Å
(k). Abstractly, it is generated by symbols xα(s) for α ∈ Φ̊ and

s ∈ k, subject to the relations

xα(s)xα(u) = xα(s+ u)

[xα(s), xβ(u)] =
∏

i,j>0

xiα+jβ
Ä

Cα,βij siuj
ä

(for α+ β 6= 0)

hα(s)hα(u) = hα(su) ( for s, u 6= 0),

where hα(s) = nα(s)nα(−1)

and nα(s) = xα(s)x−α
(
−s−1

)
xα(s).

Note that the structure constants Cα,βij are the same as for KMS groups (see Remark 3.3).

Remark 5.2. Let k be a field and let k[t] denote the polynomial ring in one variable over k. The
simply-connected Chevalley group Chev

Å
(k[t]) is, similar to the case of a Chevalley group over a

field, generated by elements xα(s) for α ∈ Φ̊, s ∈ k[t] that satisfy the relations above, where for the
third relation we have to add the extra assumption that u, s are invertible in k[t]. This can be found
e.g. in [VP96, Chapters 7,9 and 13].

Let Å = (Ai,j)i,j∈I̊ , I̊ = {1, . . . d} be an irreducible (spherical) Cartan matrix with spherical root

system Φ̊ and set of simple roots Π̊ = {α1, . . . , αd}. This root system has a unique highest root
γ ∈ Φ̊, which means that γ is such that for any αi ∈ Π̊ we have γ + αi /∈ Φ̊.

Whenever we remove one root from the set S := {−γ, α1, . . . , αd} we get a set of simple roots
(although they might not generate the full root system Φ̊ but a subsystem).

We set α0 = −γ and I = {0, . . . , d}. The idea now is to consider the set Π = {α0, . . . , αd} as set
of simple roots of a root system Φ such that for all i, j ∈ I the roots αi, αj generate the same rank

two subsystem as αi, αj in Φ̊. The resulting root systems Φ with simple roots Π = {α0, . . . , αd} and
generalized Cartan matrix A are described by the Dynkin diagrams in [Kac83, §4.8] (or [Mar18, Table
5.1 Aff 1]) and are of affine (untwisted) type. Note that A is of rank d+1, is d-spherical and purely
d-spherical.

For a root β =
∑

i∈I̊ λiαi ∈ Φ̊, λi ∈ Z, we write β =
∑
i∈I̊ λiαi ∈ Φ. We set δ = α0 + γ ∈⊕i∈I Zαi

which is not in Φ but it is what is called an imaginary root of the root system associated to A.
For our purposes, it suffices to think of it as an element in

⊕
i∈I Zαi. From [Kac83, Section 7.4] it

follows that Φ = {aα,m := α +mδ | m ∈ Z, α ∈ Φ̊}. Note that α0 = a−γ,1. A root aα,m is in Φ+ if

and only if m ≥ 1 or m = 0 and α ∈ Φ̊+ (see e.g. [Mar18, proof of Theorem 7.90]).

Before we continue with the construction, we fix a few notations: k[t] denotes the polynomial ring in
one variable t over k. For a polynomial f ∈ k[t], let (f) = {g ·f | g ∈ k[t]} denote the ideal generated
by f in k[t] (e.g. (t) is the set of polynomials without constant term) and let ktn = {λtn | λ ∈ k}
be the set of all scalar multiples of tn.

Let k be a finite field of order |k| ≥ 4 and assume that rank(Φ̊) ≥ 2 (thus we have UA(k) ։ U+).
[Mar18, Theorem 7.90] implies that the following is a well-defined injective homomorphism

φ̃ : U+ → Chev
Å
(k[t]) = 〈xα(g) | α ∈ Φ̊, g ∈ k[t]〉

uaα,m
(λ) 7→ xα(λt

m).
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Let f ∈ k[t] be an irreducible polynomial of degree ℓ ≥ 2. Then k[t] = (t) + (f) and we denote by
πf : k[t] → k[t]/(f) the projection to the quotient of the polynomial ring by the ideal generated by
f . Thus, we have πf (k[t]) = πf ((t)). The restriction of πf to {g ∈ k[t] | deg(g) < ℓ} is injective,
since {g ∈ k[t] | deg(g) < ℓ} ∩ (f) = {0}.
Using the functoriality of the Chevalley group functor, we can go from the Chevalley group over k[t]
to the one over k[t]/(f) by applying πf "entry-wise". We furthermore precompose with the map
ψ : UA(k) → U+ from Remark 3.5. We get the following well-defined map

ϕf : UA(k)
ψ−→ U+ φ̃−→ Chev

Å
(k[t])

πf−→ Chev
Å
(k[t]/(f))

ui(λ) 7→ uαi
(λ) 7→

®

xαi
(λ) i 6= 0

x−γ(λt) i = 0
7→
®

xαi
(λ+ (f)) i 6= 0

x−γ(λt+ (f)) i = 0
.

We will use the notation φ = φ̃ ◦ ψ.

The goal is now to show that the map ϕf satisfies the requirements of Theorem 4.3, i.e. local
injectivity, surjectivity and that the image of the intersection of two local groups is the intersection
of the images. This will be done in the next section. In Section 5.3, we describe our construction in
the most basic case, namely the one where Chev

Å
= SL3. In this case, we can describe explicitly

the subgroups Hi yielding a family of HDX.

5.2 The general case

We keep the notation from Section 5.1 above.

Definition 5.3. For J ∈ QA = {J ⊆ I | J spherical}, note that {ᾱj | j ∈ J} ⊂ Π and {αj | j ∈ J} ⊂
Π̊ ∪ {α0} are sets of linear independent roots that generate roots subsystems ΦJ =

⊕
j∈J Zαj ∩ Φ

and Φ̊J =
⊕

j∈J Zαj ∩ Φ̊, respectively. Their set of positive roots is denoted by Φ+
J =

⊕
j∈J Nαj ∩Φ

and Φ̊+
J =

⊕
j∈J Nαj ∩ Φ̊, respectively.

Remark 5.4. Due to the way we defined A from Å, we have that the angles between αi, αj and

αi, αj are the same. Thus, for every J ∈ QA we have ΦJ ∼= Φ̊J .

Proposition 5.5. We have the following description of the image of the local groups under φ, where
the product is taken in an arbitrary fixed order on Φ+

J .

φ(UJ) =





∏

aα,m∈Φ+
J

xα(λaα,m
tm) | λaα,m

∈ k



 .

Proof. Note that, for J ∈ QA, UJ is the unitpotent subgroup of the positive standard Borel subgroup
of Chev(Ai,j)i,j∈J

(k). Thus, from [Car89, Theorem 5.3.3] for height preserving orders and [Ste16,

Lemma 16] for arbitrary orders on Φ+
J , we get that

UJ =




∏

α∈Φ+
J

uα(λα) | λα ∈ k



 .
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Thus,

φ(UJ ) = φ̃(UJ ) =




∏

α∈Φ+
J

φ̃(uα(λα)) | λα ∈ k



 =





∏

aα,m∈Φ+
J

φ̃(uaα,m
(λaα,m

)) | λaα,m
∈ k





=





∏

aα,m∈Φ+
J

xα(λaα,m
tm) | λaα,m

∈ k



 .

Remark 5.6. Let aα,m ∈ Φ+
J for some J ∈ QA. If 0 /∈ J , then we can write aα,m =

∑
j∈J njαj =∑

j∈J njαj for some nj ∈ N and thus α =
∑

j∈J njαj and m = 0.

If 0 ∈ J , then, for some nj ∈ N, we have

aα,m =
∑

j∈J
njαj =

∑

j∈J\{0}
njαj

︸ ︷︷ ︸
=β∈Φ̊

+ n0α0 = β +−γ + δ = β − γ + δ

and thus m = 1.

Lemma 5.7. Let f ∈ k[t] be an irreducible polynomial with deg(f) ≥ 2. Then the map ϕf = πf ◦φ :
UA(k) → Chev

Å
(k[t]/(f)) is injective on the local groups UJ , J ∈ QA.

Proof. We know that φ is injective on the local groups, since ψ is injective on the local groups and φ̃
is injective. Since deg(f) ≥ 2 we have that πf |k and πf |kt are injective. The results of Proposition 5.5
and Remark 5.6 yield that the entries in image of a local group are polynomials of degree less or
equal to 1, thus πf is injective on the image of the local groups.

Next, we show that ϕf satisfies the intersection property (IP) of Section 4.

Lemma 5.8. Let k be a finite field. Then there exists ℓ ∈ N, depending only on the GCM A and k,
such that for any irreducible polynomial f ∈ k[t] with deg(f) ≥ ℓ and for all J,K ∈ QA, we have

ϕf (UJ) ∩ ϕf (UK) = ϕf (UJ ∩ UK).

Proof. We know that in φ(UJ ), φ(UK) the degree of the entries inside the xα is at most one by
Proposition 5.5. Since the sets UJ , UK are finite, we know that the degree of t inside the xα that
appear in φ(UJ ) · φ(UK) is bounded above by some constant ℓJ,K depending on the size and the
type of J,K. Set ℓ = maxJ,K∈QA

ℓJ,K + 1. Then, by choosing f of degree at least ℓ, we ensure that
πf is injective on φ(UJ ) · φ(UK) for all J,K ∈ QA.

Furthermore, we know that φ̃ is injective. Thus πf ◦ φ̃ is injective on
⋃
J,K∈QA

ψ(UJ) ·ψ(UK). Hence,
Lemma 3.11 gives the desired result.

For fields of characteristic different from 2, this result can be made substantially more precise using
the adjoint representation of Chev

Å
(k[t]/(f)). For the characteristic 2 case, see also Remark 5.10.
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Proposition 5.9. Let k be a finite field of characteristic different from 2 and let f ∈ k[t] be
irreducible with deg(f) ≥ 2. Then for all J,K ∈ QA, we have

ϕf (UJ) ∩ ϕf (UK) = ϕf (UJ ∩ UK).

Proof. Recall that

ϕf : UA(k)
φ−→ Chev

Å
(k[t])

πf−→ Chev
Å
(k[t]/(f))

ui(λ) 7→
®

xαi
(λ) i 6= 0

x−γ(λt) i = 0
7→
®

xαi
(λ+ (f)) i 6= 0

x−γ(λt + (f)) i = 0
.

We show that the map πf is injective on φ(UJ ) · φ(UK). To do so, we consider the adjoint represen-
tation of the Chevalley group Ad : Chev

Å
(k[t]/(f)) → GL(g) and show that the composition Ad ◦πf

is injective on φ(UJ ) · φ(UK). Here g denotes the Lie algebra of G = Chev
Å
(k[t]/(f)).

Let h denote a Cartan subalgebra of g, and let gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h} be the
eigenspace corresponding to α ∈ h∗. We can identify the elements α ∈ h∗ with gα 6= 0 with the
elements of Φ̊. This gives rise to a root space decomposition of g:

g = h⊕
⊕

α∈Φ̊

gα.

Each gα is one-dimensional and we can choose a basis vector eα of gα such that exp(seα) = xα(s)
for every s ∈ k[t]/(f) =: Kf . Set hα = [eα, e−α] ∈ h for α ∈ Φ̊.

In g the following relations hold, see [Car89, Chapter 4.2]:

[hα, hβ] = 0 for all α, β ∈ Π̊;

[hα, eβ] = Cα,βeβ for all α ∈ Π̊, β ∈ Φ̊;

[eα, eβ] =

®

0 if α+ β /∈ Φ̊

Nα,βeα+β if α+ β ∈ Φ̊
for all α, β ∈ Φ̊, α 6= −β;

[eα, e−α] = hα for all α ∈ Φ̊.

Here Cα,β and Nα,β are integer constants given in the following way: Cα,α = 2, and, for α 6= −β, let

p, q ∈ N be such that for all −p ≤ i ≤ q we have iα+β ∈ Φ̊ but −(p+1)α+β /∈ Φ̊, (q+1)α+β /∈ Φ̊.
Then Cα,β = p − q and Nα,β = ±(p + 1) where the sign depends on the explicit choice of eα, eβ.

Since Φ̊ is spherical we have that p, q ≤ 3 and hence |Cα,β | ≤ 3, |Nα,β| ≤ 4.

The adjoint representation Ad : G→ GL(g) has the following concrete realization [BT84, 3.2.5]:

(Adxα(s))(eβ) =
∑

j≥0,β+jα∈Φ̊

Mα,β,js
jeβ+jα for α, β ∈ Φ̊, α 6= −β, s ∈ Kf (2)

(Ad xα(s))(e−α) = e−α − shα + s2eα for α ∈ Φ̊, s ∈ Kf (3)

(Ad xα(s))(h) = h− α(h)seα for α ∈ Φ̊, h ∈ h, s ∈ Kf . (4)

Here the Mα,β,j are constants given by the structure constants (from the commutator relations in

the Chevalley group) Cα,βi,j in the following way: Mα,β,j = Cα,βj,1 for j ≥ 1 and Mα,β,0 = 1.
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By [Mar18, Theorem 7.55] there exists a maximal split torus T of G such that ker(Ad) ⊆ T .
Furthermore, we have πf (φ(UJ )) ∩ T = πf (φ(UK)) ∩ T = {1}. Hence, Ad is injective on πf (φ(UJ ))
and πf (φ(UK)).

Next, we show that ker(Ad)∩πf (φ(UJ )φ(UK)) = {1}. Suppose there exists a 1 6= z ∈ πf (φ(UJ )φ(UK))
that acts trivially on g, i.e. Ad(z) = 1. Then there exist g ∈ πf (φ(UJ )), g

′ ∈ πf (φ(UK)) such that
Ad(g) = Ad(g′). Without loss of generality, we can assume that J = I \{i} for some i ∈ I (otherwise
J ⊂ I \ {i} for some i ∈ I, thus UJ ⊆ UI\{i} and hence πf (φ(UJ )) ⊆ πf (φ(UI\{i}))). Assuming that
K * J (otherwise the statement is trivial) we get that i ∈ K.

Let LJ be the subspace of g spanned by the basis {hα, eβ | α ∈ Π̊, β ∈ Φ̊+
J }. Then LJ is a Lie

subalgebra of g. Note that Ad(g) stabilizes LJ and that, if we define LK analogously to LJ , we have
that Ad(g′) stabilizes LK .

Next, we show that there exists a h ∈ h with Ad(g′)(h) /∈ LJ .

Note that any α ∈ Φ̊+
K has a unique decomposition as

∑
i∈K niαi for some ni ∈ N. We define the

height of a root α in Φ̊+
K to be ht(α) =

∑
i∈K ni. We order the roots in Φ̊+

K in the following way:

we start with the roots in Φ̊+
K \ Φ̊+

J and order them increasing in height. Afterwards, we arrange the

remaining roots, which are in Φ̊+
K ∩ Φ̊+

J , in arbitrary order. Then g′ can be written in the following
way, where the product is taken in the order that we just fixed (see Proposition 5.5):

g′ =
∏

α∈Φ̊+
K

xα(sα).

Here the sα are elements of Kf . Let α ∈ Φ̊+
K be the first root in the order such that sα 6= 0. Since

g′ /∈ πf (φ(UJ )), we have that α ∈ Φ̊+
K \ Φ̊+

J .

The set P := Φ̊+
K \ Φ̊+

J has the following two properties. For all β, γ ∈ P such that β + γ ∈ Φ̊+

we have β + γ ∈ P (we say that P is closed), and for all β ∈ P, γ ∈ Φ̊+
K with β + γ ∈ Φ̊+ we have

β + γ ∈ P (we say that P is an ideal in Φ̊+
K).

We set h = hα, the co-root corresponding to α. We inductively apply formulas (2) and (4) to
Ad(g′)(hα) = Ad(

∏
α∈Φ̊+

K
xα(sα))(hα), using the observations above and that xα(sα) is the first

non-trivial term in g′. Further using that Ad(xα(sα))(hα) = hα − 2sαeα, we have that

Ad(g′)(hα) = hα − 2sαeα +
∑

β∈Φ̊+
J ∩Φ̊+

K

λβeβ +
∑

γ∈Φ̊+
K\Φ̊+

J : ht(γ)≥ht(α),γ 6=α

λγeγ

for some λβ , λγ ∈ Kf .

Since we assume char(k) 6= 2, we have Ad(g′)(hα) /∈ LJ , a contradiction to Ad(g) = Ad(g′).
Therefore, we have shown that ker(Ad) ∩ πf (φ(UJ )φ(UK)) = {1}.
Now, we can conclude that πf is injective on φ(UJ )φ(UK). Let 1 6= a ∈ φ(UJ ), 1 6= b ∈ φ(UK) such
that ab 6= 1. We want to show that πf (ab) 6= 1. By Lemma 5.7, we have πf (a) 6= 1, πf (b) 6= 1.
Since both are in πf (φ(UJ )φ(UK)) and πf (φ(UJ )φ(UK)) ∩ ker(Ad) = {1}, we know Ad(πf (a)) 6=
1,Ad(πf (b)) 6= 1 and Ad(πf (a)πf (b)) = Ad(πf (ab)) 6= 1. This implies that πf (ab) 6= 1.

Furthermore, we know that φ̃ : U+ → Chev
Å
(k[t]) is injective. Thus πf ◦ φ̃ is injective on⋃

J,K∈QA
ψ(UJ ) · ψ(UK). Hence, Lemma 3.11 gives the desired result.
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Remark 5.10. If the characteristic of k is 2, the proof of Proposition 5.9 only fails if α(h) = 0 for
all h in the Cartan subalgebra. The root α is the image of a simple root, say αi, under the action
of an element of the Weyl group. Thus,

α(h) = 0 for all h ∈ h ⇐⇒ αi(h) = 0 for all h ∈ h ⇐⇒ Åj,i = αi(hj) = 0 for all j ∈ I̊

If the Cartan matrix Å has no column equal to 0 mod 2, i.e. the Dynkin diagram has no double
edges, then the above proof still works by choosing h such that α(h) 6= 0 in k instead of taking hα.
Hence, if the characteristic of k is 2 and the Cartan matrix is not of type Bn or Cn, we still get the
result of Proposition 5.9.

Finally, we show that ϕf is surjective.

Proposition 5.11. The image of φ has the following form:

φ(UA(k)) =
¨

xα(g) | α ∈ Φ̊, g ∈ k[t] if α ∈ Φ̊+, g ∈ (t)⊳ k[t] otherwise
∂

.

Proof. Recall that Φ+ = {α+mδ | m = 0 and α ∈ Φ̊+ or m ≥ 1, α ∈ Φ̊} and for uaα,m
(λ) ∈ U+ we

have φ̃(uaα,m
(λ)) = xα(λt

m). Thus,

φ(UA(k)) = φ̃(U+) = φ̃(〈uaα,m
(λaα,m

) | aα,m ∈ Φ+, λ ∈ k〉)
= 〈xα(λαtmα) | m = 0 and α ∈ Φ̊+ or m ≥ 1, α ∈ Φ̊〉

which implies the result.

Corollary 5.12. The map ϕf = πf ◦ φ : UA(k) → Chev
Å
(k[t]/(f)) is surjective.

Proof. This follows from Proposition 5.11 together with the fact that πf ((t)) = πf (k[t]).

The work done in this section results in the following theorem.

Theorem 5.13. Let Å be an irreducible Cartan matrix and let k be a finite field. Then there
exists ℓ ∈ N, where ℓ = 2 if k has characteristic different from 2, such that the following holds.
Any family of irreducible polynomials fm ∈ k[t],m ∈ N, satisfying deg(fm) ≥ ℓ for all m ∈ N
and deg(fm) → ∞ for m → ∞, gives rise to an infinite family of maps (ϕm)m∈N satisfying all
requirements of Theorem 4.3 and such that | Im(ϕm)| = |Chev

Å
(Fpdeg(fm))| m→∞−→ ∞. Thus, each

such family of irreducible polynomials gives rise to an infinite family of bounded degree HDX.

5.3 Example case: SL3

In this section, we describe the situation in the case where Φ̊ is of type A2, i.e. Chev
Å
= SL3.

This will give rise to probably the most basic setting to which we can apply our main result Theo-
rem 4.3.

In this case the generators xα(λ) for α ∈ Φ̊ of the Chevalley group can be realized as the following
matrices:

xα1(λ) =

Ñ

1 λ 0
0 1 0
0 0 1

é

, xα2(λ) =

Ñ

1 0 0
0 1 λ
0 0 1

é

, x−γ(λ) =

Ñ

1 0 0
0 1 0
λ 0 1

é

.
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We consider the map φ as described above:

φ : UA(k) = 〈ui(λ) | i = 0, 1, 2, λ ∈ k〉 → Chev
Å
(k[t]) = 〈xα(g) | α ∈ Φ̊, g ∈ k[t]〉

u1(λ) 7→ xα1 (λ) u2(λ) 7→ xα2(λ) u0(λ) 7→ x−γ(λt).

We get the following images of the local groups of the spherical subsets of I = {0, 1, 2}:

φ(U12) =

Ñ

1 k k
0 1 k
0 0 1

é

, φ(U01) =

Ñ

1 k 0
0 1 0
kt kt 1

é

, φ(U02) =

Ñ

1 0 0
kt 1 k
kt 0 1

é

.

Next, we fix a family of irreducible polynomials (fm)m∈N with deg(fm) ≥ 2 for all m ∈ N, and
with limm→∞ deg(fm) = ∞. Note that when Φ̊ is of type An, then the constants Cα,β appearing in
the proof of Proposition 5.9 have absolute value at most one and thus do not vanish when seen in
k[t]/(fm) even if k has characteristic 2. This gives rise to maps

ϕm = πfm ◦ φ : UA(k) → Chev
Å
(k[t]/(fm))

by taking each entry of the matrices modulo the ideal generated by fm.

Setting

Gm = Chev
Å
(k[t]/(fm)), Hm

0 = πfm(φ(U12)), Hm
1 = πfm(φ(U02)), Hm

2 = πfm(φ(U01))

we get an infinite family of HDX of the form Xm = CC(Gm;Hm
0 , H

m
1 , H

m
2 ),m ∈ N.

6 Comparison and generalisation

In this section, we first compare our construction to those of Kaufman and Oppenheim in [KO18] and
O’Donnell and Pratt in [OP22]. Then, we give a potentially more general formulation of Theorem 4.3
that might give rise to even more high-dimensional expanders in the future.

6.1 Comparison to other constructions

The first construction of HDX using coset complexes by Kaufman and Oppenheim [KO18] takes
as groups the elementary groups Gm = Eln+1(Fq/(tm)) and subgroups Hi = 〈ej,j+1(a + bt) | j ∈
{0, . . . , n} \ {i}, a, b ∈ Fq〉 where j + 1 is considered modulo n+ 1 and ej,j+1(g) is the matrix with
ones on the diagonal and g at position (j, j + 1).

On the other hand, O’Donnell and Pratt take in [OP22] as groups Gm = Chev
Å
(Fpm) and as sub-

groups Hα = 〈xβ(g) | β ∈ S \ {α}, g ∈ Fpm , deg(g) ≤ 1} where S = Π̊ ∪ {−
∑d
i=1 αi} and α ∈ S.

The construction by Kaufman and Oppenheim can be seen as an instance of O’Donnell and Pratt’s
construction.

These constructions differ from our construction applied to Chevalley groups in two places: they
allow the entries of the generators to be polynomials of degree ≤ 1 while in our construction the
entries will either be constant or multiples of t (in both cases modulo an irreducible polynomial).

Secondly, they take as extra generator the one indexed by the root −∑d
i=1 αi while we take the
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negative of the highest root. In case the root system is of type An (and the Chevalley group is thus
SLn+1) those two definitions coincide, but not in the other cases. The authors note in [OP22, Remark
3.11] that other choices of S would be possible. Finally, another difference is that our construction
works in the G2 case, and Theorem 4.3 gives a tool that allows to consider HDX over many other
groups as well.

The coset complexes described in Section 5.3 are very similar to the coset complexes used in [DLYZ23]
to construct a family of symmetric error-correcting codes with low-density parity-check matrices.
But attempts of showing that the appearing complexes are isomorphic have failed so far.

Thus, our construction is not a precise generalization of the previous constructions, but it seems that
the underlying structure that leads to the good expansion property is the same. The way in which
the bound of the degree is achieved differs. Our main result, Theorem 4.3, utilizes the underlying
structure that leads to good expansion, in the most general way so far.

6.2 Generalization of the main theorem

We can formulate Theorem 4.3 in a potentially more general context than KMS-groups, although
it is not clear whether there are other groups that satisfy the requirements of the theorem and give
rise to interesting HDX.

Theorem 6.1. Let I be a finite set and for each J ⊂ I, 1 ≤ |J | ≤ 2 let finite groups UJ be
given together with inclusions U{i} →֒ U{i,j} for all i, j ∈ I. Furthermore, we require that U{i,j} =
〈U{i}, U{j}〉 for all i, j ∈ I. Let U be the direct limit of the UJ , J ⊂ I, 1 ≤ |J | ≤ 2 with respect to the
inclusions, i.e. U = ∗J⊂I,1≤|J|≤2UJ/(U{i} →֒ U{i,j}). We require that

(i) there exists a 0 < λ ≤ 1
|I|−1 such that CC(U{i,j}; (U{i}, U{j})) is a λ-expander graph for all

i 6= j ∈ I;

(ii) the groups U{i,j} must embed into U , i.e. the natural map from U{i,j} to U must be injective.
Then we identify U{i}, U{i,j} with their images in U .

Set UJ := 〈U{j} | j ∈ J〉 ≤ U for any J ( I. We further require that

(iii) |UJ | <∞ for all J ( I;

(iv) UJ ∩ UK = UJ∩K for all J,K ( I.

Let G be a finite group such that there exists a surjective homomorphism φ : U → G that is injective
on all the UJ and such that

φ(UJ ) ∩ φ(UK) = φ(UJ ∩ UK) for all J,K ( I.

Set Hi = φ(UI\{i}), then CC(G; (Hi)i∈I) is a γ-spectral high-dimensional expander, for some γ > 0
independent of G and φ. An infinite family of such groups G and maps φ, where the size of the
groups tends to infinity, gives rise to an finite family of bounded degree HDX.

Proving this theorem works step by step exactly like the proof of Theorem 4.3, since we assumed
exactly those properties of KMS-groups that we needed. One can interpret Section 3 as a section in
which we prove that KMS groups satisfy the assumptions of Theorem 6.1.

For |I| = 3, there exist other groups U{i}, U{i,j} that satisfy the conditions of Theorem 6.1, for
example the ones constructed in [LMW19, Theorem 4.6] or [Ron09, Chapter 4, Example 1]. In both
examples, the difficulty is to find appropriate families of finite quotients which would be necessary
to obtain an infinite family of bounded degree HDX.
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